Advertisement

Demoing Platypus – A Multilingual Question Answering Platform for Wikidata

  • Thomas Pellissier Tanon
  • Marcos Dias de Assunção
  • Eddy Caron
  • Fabian M. Suchanek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11155)

Abstract

In this paper we present Platypus, a natural language question answering system on Wikidata. Our platform can answer complex queries in several languages, using hybrid grammatical and template based techniques. Our demo allows users either to select sample questions, or formulate their own – in any of the 3 languages that we currently support. A user can also try out our Twitter bot, which replies to any tweet that is sent to its account.

Notes

Acknowledgments

We thank the contributors of the first version of the Platypus project: M. Chevalier, R. Charrondière, Q. Cormier, T. Cornebize, Y. Hamoudi, V. Lorentz. Work supported by the LABEX MILYON (ANR-10-LABX-0070).

References

  1. 1.
    Pellissier Tanon, T., Dias De Assuncao, M., Caron, E., Suchanek, F.: Platypus - a multilingual question answering platform for Wikidata. Technical report (2018)Google Scholar
  2. 2.
    Marginean, A.: Question answering over biomedical linked data with grammatical framework. Semant. Web 8(4), 565–580 (2017)CrossRefGoogle Scholar
  3. 3.
    Reddy, S., Täckström, O., Petrov, S., Steedman, M., Lapata, M.: Universal semantic parsing. In: EMNLP (2017)Google Scholar
  4. 4.
    Athreya, R.G., Ngomo, A.C.N., Usbeck, R.: Enhancing community interactions with data-driven chatbots - the DBpedia chatbot. In: WWW Demo (2018)Google Scholar
  5. 5.
    Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.N., Gerber, D., Cimiano, P.: Template-based question answering over RDF data. In: WWW (2012)Google Scholar
  6. 6.
    Sorokin, D., Gurevych, I.: End-to-end representation learning for question answering with weak supervision. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 70–83. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69146-6_7CrossRefGoogle Scholar
  7. 7.
    Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V., Weikum, G.: Natural language questions for the web of data. In: EMNLP-CoNLL (2012)Google Scholar
  8. 8.
    Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with memory networks. CoRR (2015)Google Scholar
  9. 9.
    Yin, W., Yu, M., Xiang, B., Zhou, B., Schütze, H.: Simple question answering by attentive convolutional neural network. In: COLING (2016)Google Scholar
  10. 10.
    Hakimov, S., Jebbara, S., Cimiano, P.: AMUSE: multilingual semantic parsing for question answering over linked data. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 329–346. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_20CrossRefGoogle Scholar
  11. 11.
    Diefenbach, D., Singh, K., Maret, P.: WDAqua-core0: a question answering component for the research community. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 84–89. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69146-6_8CrossRefGoogle Scholar
  12. 12.
    Kaffee, L., Piscopo, A., Vougiouklis, P., Simperl, E., Carr, L., Pintscher, L.: A glimpse into Babel: an analysis of multilinguality in Wikidata. In: OpenSym (2017)Google Scholar
  13. 13.
    Zelle, J.M., Mooney, R.J.: Learning to parse database queries using inductive logic programming. In: AAAI (1996)Google Scholar
  14. 14.
    Liang, P., Jordan, M.I., Klein, D.: Learning dependency-based compositional semantics. Comput. Linguist. 39(2), 389–446 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural networks. In: EMNLP (2014)Google Scholar
  16. 16.
    Honnibal, M., Johnson, M.: An improved non-monotonic transition system for dependency parsing. In: EMNLP (2015)Google Scholar
  17. 17.
    Bocklisch, T., Faulker, J., Pawlowski, N., Nichol, A.: Rasa: open source language understanding and dialogue management. CoRR (2017)Google Scholar
  18. 18.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML (2001)Google Scholar
  19. 19.
    Diefenbach, D., Pellissier Tanon, T., Singh, K.D., Maret, P.: Question answering benchmarks for Wikidata. In: ISWC Poster (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Thomas Pellissier Tanon
    • 1
    • 2
  • Marcos Dias de Assunção
    • 1
  • Eddy Caron
    • 1
  • Fabian M. Suchanek
    • 2
  1. 1.Université de Lyon, ENS de Lyon, Inria, CNRS, Univ. Claude-Bernard Lyon 1, LIPLyonFrance
  2. 2.LTCI, Télécom ParisTechParisFrance

Personalised recommendations