Advertisement

Cell Death: Many Causes and Many Effects

  • Dennis V. CokkinosEmail author
Chapter

Abstract

The process of cell death is involved in many aspects of cardiovascular disease and organ development. Its main representatives are apoptosis, which is characterized by nucleus condensation, necrosis, characterized by cytosolic membrane rupture, which induces inflammation and innate immunity activation, and autophagy which is an energy and membrane-sparing and mitochondrial preservation process. It is increasingly being realized that these three modalities are interconnected with significant cross talk among them, especially between necrosis and apoptosis, acting on the mitochondrial permeability transition pore. They are involved in acute myocardial infarction with the resultant ischemia/reperfusion injury, chronic heart failure, especially with post-infarct remodeling, pressure and volume cardiac overload, and antineoplastic therapy. The continuous advance in therapeutic approaches is underlined, and the role of microRNAs is described.

Keywords

Cell death Apoptosis Necrosis Autophagy Heart failure Cardiac Mitochondrial permeability transition pore 

References

  1. 1.
    Marín-García J. Cell death in the pathogenesis and progression of heart failure. Heart Fail Rev. 2016;21:117–21.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14:1237–43.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3–11.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147:742–58.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Galluzzi L, Bravo-San Pedro JM, Kepp O, Kroemer G. Regulated cell death and adaptive stress responses. Cell Mol Life Sci. 2016;73:2405–10.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146:3–15.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kostin S. Pathways of myocyte death: implications for development of clinical laboratory biomarkers. Adv Clin Chem. 2005;40:37–98.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Baines CP. The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol. 2009;104:181–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Galluzzi L, Kepp O, Kroemer G. Mitochondrial regulation of cell death: a phylogenetically conserved control. Microb Cell. 2016;3:101–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Crompton M. Mitochondrial intermembrane junctional complexes and their role in cell death. J Physiol. 2000;529:11–21.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27:6245–51.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta. 1787;2009:1395–401.Google Scholar
  15. 15.
    Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death in disease. Mechanisms and emerging therapeutic concepts. N Engl J Med. 2009;361:1570–83.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003;93:292–301.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nature Cell Biol. 2013;15:1464–72.  https://doi.org/10.1038/incb2868.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999;397:441–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26:165–76.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10:9–17.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265:130–42.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9:113–4.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42:245–54.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Brough D, Rothwell NJ. Caspase-1-dependent processing of pro-interleukin-1beta is cytosolic and precedes cell death. J Cell Sci. 2007;120:772–81.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10:241–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yang J, Zhao Y, Shao F. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol. 2015;32:78–83.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171:2000–16.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    David KK, Andrabi SA, Dawson TM, Dawson VL. Parthanatos, a messenger of death. Front Biosci (Landmark Ed). 2009;14:1116–28.CrossRefGoogle Scholar
  30. 30.
    Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007;131:966–79.PubMedCrossRefGoogle Scholar
  31. 31.
    Sun Q, Luo T, Ren Y, Florey O, Shirasawa S, Sasazuki T, et al. Competition between human cells by entosis. Cell Res. 2014;24:1299–310.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Feuerstein G, Ruffolo RR Jr, Yue TL. Apoptosis and congestive heart failure. Trends Cardiovasc Med. 1997;7:249–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Nishimura Y, Lemasters JJ. Glycine blocks opening of a death channel in cultured hepatic sinusoidal endothelial cells during chemical hypoxia. Cell Death Differ. 2001;8:850–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994;94:1621–18.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM. Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res. 2012;94:168–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev. 2006;20:1–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Luke CJ, Pak SC, Askew YS, Naviglia TL, Askew DJ, Nobar SM, et al. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell. 2007;130:1108–19.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Laster SM, Wood JG, Gooding LR. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol. 1988;141:2629–34.PubMedGoogle Scholar
  40. 40.
    Syntichaki P, Xu K, Driscoll M, Tavernarakis N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature. 2002;419:939–44.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Investig. 1996;74:86–107.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl). 1990;181:195–213.CrossRefGoogle Scholar
  43. 43.
    Pedrozo Z, Torrealba N, Fernández C, Gatica D, Toro B, Quiroga C, et al. Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy. Cardiovasc Res. 2013;98:277–85.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lavandero S, Chiong M, Rothermel BA, Hill JA. Autophagy in cardiovascular biology. J Clin Invest. 2015;125:55–64.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wang ZV, Ferdous A, Hill JA. Cardiomyocyte autophagy: metabolic profit and loss. Heart Fail Rev. 2013;18:585–94.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dhesi P, Tehrani F, Fuess T, Schwarz ER. How does the heart (not) die? The role of autophagy in cardiomyocyte homeostasis and cell death. Heart Fail. 2015;15:15–21.CrossRefGoogle Scholar
  48. 48.
    Gottlieb RA, Mentzer RM Jr. Autophagy: an affair of the heart. Heart Fail Rev. 2013;18:575–84.PubMedCrossRefGoogle Scholar
  49. 49.
    Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS, Benjamin IJ, et al. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A. 2008;105:9745–50.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Maloyan A, Sayegh J, Osinska H, Chua BH, Robbins J. Manipulation of death pathways in desmin-related cardiomyopathy. Circ Res. 2010;106:1524–32.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest. 2003;111:617–25.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ferdous A, Battiprolu PK, Ni YG, Rothermel BA, Hill JA. FoxO, autophagy, and cardiac remodeling. J Cardiovasc Transl Res. 2010;3:355–64.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cao DJ, Jiang N, Blagg A, Johnstone JL, Gondalia R, Oh M, et al. Mechanical unloading activates FoxO3 to trigger Bnip3-dependent cardiomyocyte atrophy. J Am Heart Assoc. 2013;2(2):e000016.  https://doi.org/10.1161/JAHA.113.000016.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009;16:939–46.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Feng CC, Lin CC, Lai YP, Chen TS, Marthandam Asokan S, Lin JY, et al. Hypoxia suppresses myocardial survival pathway through HIF-1α-IGFBP-3-dependent signaling and enhances cardiomyocyte autophagic and apoptotic effects mainly via FoxO3a-induced BNIP3 expression. Growth Factors. 2016;34:73–86.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Liu C, Xue R, Wu D, Wu L, Chen C, Tan W, et al. REDD1 attenuates cardiac hypertrophy via enhancing autophagy. Biochem Biophys Res Commun. 2014;454:215–20.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Jin HO, Hong SE, Kim JH, Choi HN, Kim K, An S, et al. Sustained overexpression of Redd1 leads to Akt activation involved in cell survival. Cancer Lett. 2013;336:319–24.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Aits S, Jäättelä M. Lysosomal cell death at a glance. J Cell Sci. 2013;126:1905–12.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Plotegher N, Duchen MR. Mitochondrial dysfunction and neurodegeneration in lysosomal storage disorders. Trends Mol Med. 2017;23:116–34.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kurz T, Terman A, Gustafsson B, Brunk UT. Lysosomes and oxidative stress in aging and apoptosis. Biochim Biophys Acta. 1780;2008:1291–303.Google Scholar
  61. 61.
    Yamashima T. Hsp70.1 and related lysosomal factors for necrotic neuronal death. J Neurochem. 2012;120:477–94.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Zhao M, Antunes F, Eaton JW, Brunk UT. Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem. 2003;270:3778–86.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Yuan XM, Li W, Dalen H, Lotem J, Kama R, Sachs L, et al. Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci U S A. 2002;99:6286–91.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Schuler M, Green DR. Mechanisms of p53 dependent apoptosis. Biochem Soc Trans. 2001;29:684–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kung G, Konstantinidis K, Kitsis RN. Programmed necrosis, not apoptosis, in the heart. Circ Res. 2011;108:1017–36.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Konstantinidis K, Whelan RS, Kitsis RN. Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol. 2012;32:1552–62.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death? Exp Cell Res. 2003;283:1–16.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;370:455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Karch J, Molkentin JD. Regulated necrotic cell death: the passive aggressive side of Bax and Bak. Circ Res. 2015;116:1800–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 1833;2013:3448–59.Google Scholar
  71. 71.
    Skulachev VP. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis. 2006;11:473–85.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Xia P, Liu Y, Cheng Z. Signaling pathways in cardiac myocyte apoptosis. Biomed Res Int. 2016;2016:9583268.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22:58–73.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C. p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol. 2009;29:2594–608.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:135–47.CrossRefGoogle Scholar
  77. 77.
    Levin S, Bucci TJ, Cohen SM, Fix AS, Hardisty JF, LeGrand EK, et al. The nomenclature of cell death: recommendations of an ad hoc Committee of the Society of Toxicologic Pathologists. Toxicol Pathol. 1999;27:484–90.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Takemura G, Maruyama R, Goto K, Kanamori H, Tsujimoto A, Minatoguchi S, et al. Fate of isolated adult cardiomyocytes undergoing starvation-induced autophagic degeneration. Autophagy. 2009;5:90–2.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kostin S. Types of cardiomyocyte death and clinical outcomes in patients with heart failure. J Am Coll Cardiol. 2011;57:1532–4.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Vigliano CA, Cabeza Meckert PM, Diez M, Favaloro LE, Cortés C, Fazzi L, et al. Cardiomyocyte hypertrophy, oncosis, and autophagic vacuolization predict mortality in idiopathic dilated cardiomyopathy with advanced heart failure. J Am Coll Cardiol. 2011;57:1523–31.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Piek A, de Boer RA, Silljé HH. The fibrosis-cell death axis in heart failure. Heart Fail Rev. 2016;21:199–211.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952–61.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Chaanine AH, Jeong D, Liang L, Chemaly ER, Fish K, Gordon RE, et al. JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis. 2012;3:265.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Nagoshi T, Matsui T, Aoyama T, Leri A, Anversa P, Li L, et al. PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J Clin Invest. 2005;115:2128–38.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Schwartzbauer G, Robbins J. The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J Biol Chem. 2001;276:35786–93.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, et al. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med. 2007;13:1467–75.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Liu J, Mao W, Ding B, Liang CS. ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol. 2008;295(5):H1956–65.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Shao Z, Bhattacharya K, Hsich E, Park L, Walters B, Germann U, et al. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo. Circ Res. 2006;98:111–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Saurin AT, Martin JL, Heads RJ, Foley C, Mockridge JW, Wright MJ, et al. The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes. FASEB J. 2000;14:2237–46.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kasahara T, Koguchi E, Funakoshi M, Aizu-Yokota E, Sonoda Y. Antiapoptotic action of focal adhesion kinase (FAK) against ionizing radiation. Antioxid Redox Signal. 2004;4:3.  https://doi.org/10.1089/15230860260196290.CrossRefGoogle Scholar
  91. 91.
    Sedgerab LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants – past, present and future. Elsevier. 2014;25:453–72.Google Scholar
  92. 92.
    Hamid T, Guo SZ, Kingery JR, Xiang X, Dawn B, Prabhu SD. Cardiomyocyte NF-κB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure. Cardiovasc Res. 2011;89:129–38.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Maier HJ, Schips TG, Wietelmann A, Krüger M, Brunner C, Sauter M, et al. Cardiomyocyte-specific IκB kinase (IKK)/NF-κB activation induces reversible inflammatory cardiomyopathy and heart failure. Proc Natl Acad Sci U S A. 2012;109:11794–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Shin SY, Kim T, Lee HS, Kang JH, Lee JY, Cho KH, et al. The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nat Commun. 2014;5:5777.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, et al. Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol. 2012;59:1979–87.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    O'Connell TD, Jensen BC, Baker AJ, Simpson PC. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev. 2013;66:308–33.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Klainguti M, Aigner S, Kilo J, Eppenberger HM, Mandinova A, Aebi U, et al. Lack of nuclear apoptosis in cardiomyocytes and increased endothelin-1 levels in a rat heart model of myocardial stunning. Basic Res Cardiol. 2000;95:308–15.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol. 1997;29:859–70.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Germack R, Griffin M, Dickenson JM. Activation of protein kinase B by adenosine A1 and A3 receptors in newborn rat cardiomyocytes. J Mol Cell Cardiol. 2004;37:989–99.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Germack R, Dickenson JM. Adenosine triggers preconditioning through MEK/ERK1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat cardiomyocytes. J Mol Cell Cardiol. 2005;39:429–42.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Liu Q, Chen X, Macdonnell SM, Kranias EG, Lorenz JN, Leitges M, et al. Protein kinase C{alpha}, but not PKC{beta} or PKC{gamma}, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach. Circ Res. 2009;105:194–200.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Little GH, Saw A, Bai Y, Dow J, Marjoram P, Simkhovich B, et al. Critical role of nuclear calcium/calmodulin-dependent protein kinase IIdeltaB in cardiomyocyte survival in cardiomyopathy. J Biol Chem. 2009;284:24857–68.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Zhu W, Woo AY, Yang D, Cheng H, Crow MT, Xiao RP. Activation of CaMKIIdeltaC is a common intermediate of diverse death stimuli-induced heart muscle cell apoptosis. J Biol Chem. 2007;282:10833–9.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    MacDonnell SM, Weisser-Thomas J, Kubo H, Hanscome M, Liu Q, Jaleel N, et al. CaMKII negatively regulates calcineurin-NFAT signaling in cardiac myocytes. Circ Res. 2009;105:316–25.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Zhivotovsky B, Orrenius S. Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium. 2014;50:211–21.CrossRefGoogle Scholar
  106. 106.
    Hajnóczky G, Davies E, Madesh M. Calcium signaling and apoptosis. Biochem Biophys Res Commun. 2003;304:445–54.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Vafiadaki E, Arvanitis DA, Pagakis SN, Papalouka V, Sanoudou D, Kontrogianni-Konstantopoulos A, et al. The anti-apoptotic protein HAX-1 interacts with SERCA2 and regulates its protein levels to promote cell survival. Mol Biol Cell. 2009;20:306–18.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Zhao W, Waggoner JR, Zhang ZG, Lam CK, Han P, Qian J, et al. The anti-apoptotic protein HAX-1 is a regulator of cardiac function. Proc Natl Acad Sci U S A. 2009;106:20776–81.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cokkinos DV. Mechanisms and modalities of cell death in translational cardiovascular research. Cham: Springer; 2015. p. 253–78.Google Scholar
  110. 110.
    Timmers L, Paster Kamp G, de Hoog VC, Arslan F, Appleman Y, de Kleijn DPV. The innate immune response in reperfused myocardium. Cardiovasc Res. 2012;94:276–83.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251–5.  https://doi.org/10.1038/nature10992.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Christia P, Frangogiannis NG. Targeting inflammatory pathways in myocardial infarction. Eur J Clin Investig. 2013;43:986–95.CrossRefGoogle Scholar
  113. 113.
    Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ. HMG-1 as a mediator of acute lung inflammation. J Immunol. 2000;165:2950–4.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461:282–6.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20:1301–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13:832–42.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Vacchelli E, Ma Y, Baracco EE, Sistigu A, Enot DP, Pietrocola F, et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science. 2015;350:972–8.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol. 2013;16:319–26.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Dutta P, Courties G, Wei Y, Leuschner F, Gorgatov R, Robbins C, et al. Myocardial infarction accelerates atherosclerosis. Nature. 2012;487:325–9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Nicolaou P, Rodriguez P, Ren X, Zhou X, Qian J, Sadayappan S, et al. Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury. Circ Res. 2009;104:1012–20.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88:581–609.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ong SB, Gustafsson AB. New roles for mitochondria in cell death in the reperfused myocardium. Cardiovasc Res. 2012;94:190–6.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Park JL, Lucchesi BR. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg. 1999;68:1905–2012.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Eltzsching HK, Eckle T. Ischemia and reperfusion from mechanism to translation. Nature Med. 2011;17:1393–401.Google Scholar
  128. 128.
    Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100:914–22.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy. 2008;4:195–204.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Mani K, Kitsis RN. Myocyte apoptosis: programming ventricular remodelling. J Am Coll Cardiol. 2003;41:761–4.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Sam F, Sawyer DB, Chang DL, Eberli FR, Ngoy S, Jain M, et al. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol Heart Circ Physiol. 2000;279:H422–8.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Phys. 2001;280:H2726–31.Google Scholar
  133. 133.
    Abbate A, Biondi-Zoccai GG, Baldi A. Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. J Cell Physiol. 2002;193:145–53.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Marín-García J, Goldenthal MJ, Damle S, Pi Y, Moe GW. Regional distribution of mitochondrial dysfunction and apoptotic remodeling in pacing-induced heart failure. J Card Fail. 2009;15:700–8.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Dent MR, Tappia PS, Dhalla NS. Gender differences in apoptotic signaling in heart failure due to volume overload. Apoptosis. 2010;15:499–510.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Sun M, Chen M, Dawood F, Zurawska U, Li JY, Parker T, et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation. 2007;115:1398–407.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Ueno M, Kakinuma Y, Yuhki K, Murakoshi N, Iemitsu M, Miyauchi T, Yamaguchi I. Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. J Pharmacol Sci. 2006;101:151–8.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, et al. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Phys. 1996;271:H1215–28.Google Scholar
  139. 139.
    Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26:1068–79.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J. Aging and autophagy in the heart. Circ Res. 2016;118:1563–76.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kawai C, Matsumori A. Dilated cardiomyopathy update: infectious-immune theory revisited. Heart Fail Rev. 2013;18:703–14.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Brunner S, Theiss HD, Leiss M, Grabmaier U, Grabmeier J, Huber B, et al. Enhanced stem cell migration mediated by VCAM-1/VLA-4 interaction improves cardiac function in virus-induced dilated cardiomyopathy. Basic Res Cardiol. 2013;108:388.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Abbate A, Sinagra G, Bussani R, Hoke NN, Merlo M, Varma A, et al. Apoptosis in patients with acute myocarditis. Am J Cardiol. 2009;104:995–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Zhang P, Cox CJ, Alvarez KM, Cunningham MW. Cutting edge: cardiac myosin activates innate immune responses through. TLRs J Immunol. 2009;183:27–31.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM. Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res. 2001;51:304–12.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Park M, Shen YT, Gaussin V, Heyndrickx GR, Bartunek J, Resuello RR, et al. Apoptosis predominates in nonmyocytes in heart failure. Am J Phys. 2009;297:H785–91.Google Scholar
  147. 147.
    Hausenloy DJ, Bøtker HE, Condorelli G, Ferdimandly P, Grurcia-Dorado D, Heusch G, et al. Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2013;98:7–22.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Hausenloy DJ, Garcia-Dorado D, Bøtker HE, Davidson SM, Downey J, Engel FB, et al. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res. 2017;113:564–85.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–81.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Soha NR, Clement RT, Feng J, Liu Y, Bianchi C, Horvath EM, et al. The effects therapeutic sulfide on myocardial apoptosis in response to ischemia-reperfusion injury. Eur J Cardiothorac Surg. 2008;33:906–13.CrossRefGoogle Scholar
  151. 151.
    Smith CC, Davidson SM, Lim SY, Simkin JC, Hothersall JS, Yellon DM. Necrostatin: a potential novel cardioprotective agent? Cardiovasc Drugs Ther. 2007;21:227–3.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Zhang L, Zhang L, Li YH, Zhang HY, Chen ML, Gao MM, et al. High-dose glucose-insulin-potassium treatment reduces myocardial apoptosis in patients with acute myocardial infarction. Eur J Clin Investig. 2005;35:164–70.CrossRefGoogle Scholar
  153. 153.
    Ovize M, Thibault H, Przyklenk K. Myocardial conditioning: opportunities for clinical translation. Circ Res. 2013;113:439–50.PubMedCrossRefGoogle Scholar
  154. 154.
    Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003;83:1113–51.PubMedCrossRefGoogle Scholar
  155. 155.
    Al-Amran FG. Apoptosis amelioration through hypothermic reperfusion in heart transplant. J Pharmacol Pharmacother. 2013;4:275–80.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ramani R. Hypothermia for brain protection and resuscitation. Curr Opin Anaesthesiol. 2006;19:487–91.PubMedCrossRefGoogle Scholar
  157. 157.
    Fiuza-Luces C, Delmiro A, Soares-Miranda L, González-Murillo A, Martínez-Palacios J, Ramírez M. Exercise training can induce cardiac autophagy at end-stage chronic conditions: insights from a graft-versus-host-disease mouse model. Brain Behav Immun. 2013;pii:S0889–1591(13)00538-2.  https://doi.org/10.1016/j.bbi.2013.11.007.CrossRefGoogle Scholar
  158. 158.
    Tao R, Kim SH, Honbo N, Karliner JS, Alano CC. Minocycline protects cardiac myocytes against simulated ischemia–reperfusion injury by inhibiting poly (ADP-ribose) polymerase-1. J Cardiovasc Pharmacol. 2010;56:659–68.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, et al. Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol. 2008;44:180–7.PubMedCrossRefGoogle Scholar
  160. 160.
    Pantos C, Mourouzis I, Saranteas T, Clavé G, Ligeret H, Noack-Fraissignes P, et al. Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion? Basic Res Cardiol. 2009;104:69–77.PubMedCrossRefGoogle Scholar
  161. 161.
    Ferreyra C, Vargas F, Rodríguez-Gómez I, Pérez-Abud R, O'Valle F, Osuna A. Preconditioning with triiodothyronine improves the clinical signs and acute tubular necrosis induced by ischemia/reperfusion in rats. PLoS One. 2013;26:8:e74960.  https://doi.org/10.1371/journal.pone.0074960.CrossRefGoogle Scholar
  162. 162.
    Kumar A, Sinha RA, Tiwari M, Singh R, Koji T, Manhas N, et al. Hyperthyroidism induces apoptosis in rat liver through activation of death receptor-mediated pathways. J Hepatol. 2007;46:888–98.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Sinha RA, You SH, Zhou J, Siddique MM, Bay BH, Zhu X, et al. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J Clin Invest. 2012;122:2428–38.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Sabbah HN, Wang M, Zhang K, Gupta RC, Rastogi S. Long-term therapy with Bendavia (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular systolic function in dogs with chronic heart failure in dogs with chronic heart failure. European Society of Cardiology Congress Amsterdam, 31 August- 4 September 2013.Google Scholar
  165. 165.
    Gajarsa JJ, Kloner RA. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev. 2011;16:13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Hudson MP, Armstrong PW, Ruzyllo W, Brum J, Cusmano L, Krzeski P, et al. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am Coll Cardiol. 2006;48:15–20.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Tousoulis D, Papageorgiou N, Briasoulis A, Androulakis E, Charakida M, Tsiamis E, et al. Conflicting effects of nitric oxide and oxidative stress in chronic heart failure: potential therapeutic strategies. Heart Fail Rev. 2012;17:65–79.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109:1594–602.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT, Anti-TNF Therapy Against Congestive Heart Failure Investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107:3133–40.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Sliwa K, Woodiwiss A, Candy G, Badenhorst D, Libhaber C, Norton G, et al. Effects of pentoxifylline on cytokine profiles and left ventricular performance in patients with decompensated congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 2002;90:1118–22.PubMedCrossRefGoogle Scholar
  171. 171.
    Abbate A, Van Tassell BW, Biondi-Zoccai G, Kontos MC, Grizzard JD, Spillman DW, et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am J Cardiol. 2013;111:1394–400.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Carotenuto F, Minieri M, Monego G, Fiaccavento R, Bertoni A, Sinigaglia F, et al. A diet supplemented with ALA-rich flaxseed prevents cardiomyocyte apoptosis by regulating caveolin-3 expression. Cardiovasc Res. 2013;100:422–31.PubMedCrossRefGoogle Scholar
  173. 173.
    Kanamori H, Takemura G, Goto K, Tsujimoto A, Ogino A, Takeyama T, et al. Resveratrol reverses remodeling in hearts with large, old myocardial infarctions through enhanced autophagy-activating AMP kinase pathway. Am J Pathol. 2013;182:701–13.PubMedCrossRefGoogle Scholar
  174. 174.
    Di Lascio G, Harmelin G, Targetti M, Nanni C, Bianchi G, Gasbarri T, et al. Cellular retrograde cardiomyoplasty and relaxin therapy for postischemic myocardial repair in a rat model. Tex Heart Inst J. 2012;39:488–99.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Lee TM, Lin MS, Chang NC. Inhibition of histone deacetylase on ventricular remodeling in infarcted rats. Am J Phys. 2007;293:H968–77.Google Scholar
  176. 176.
    Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 1813;2011:1323–32.Google Scholar
  177. 177.
    Varela A, Mavroidis M, Katsimpoulas M, Sfiroera I, Kappa N, Mesa A, et al. The neuroprotective agent Rasagiline mesylate attenuates cardiac remodeling after experimental myocardial infarction. ESC Heart Fail. 2017;4:331–40.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Unsöld B, Kaul A, Sbroggiò M, Schubert C, Regitz-Zagrosek V, Brancaccio M, et al. Melusin protects from cardiac rupture and improves functional remodelling after myocardial infarction. Cardiovasc Res. 2014;101:97–107.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Dorn GW 2nd. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res. 2009;81:465–73.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Skommer J, Rana I, Marques FZ, Zhu W, Du Z, Charchar FJ. Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis. 2014;5:e1325.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Dong Y, Liu C, Zhao Y, Ponnusamy M, Li P, Wang K. Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases. Cell Mol Life Sci. 2018;75:291–300.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Tony H, Yu K, Qiutang Z. MicroRNA-208a silencing attenuates doxorubicin induced myocyte apoptosis and cardiac dysfunction. Oxidative Med Cell Longev. 2015;2015:597032.CrossRefGoogle Scholar
  183. 183.
    Wang JX, Zhang XJ, Feng C, Sun T, Wang K, Wang Y, et al. MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death Dis. 2015;6:e1677.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    González A, Ravassa S, Beaumont J, López B, Díez J. New targets to treat the structural remodeling of the myocardium. J Am Coll Cardiol. 2011;58:1833–43.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heart and Vessel DepartmentBiomedical Research Foundation, Academy of Athens - Gregory SkalkeasAthensGreece

Personalised recommendations