The Systems Biology Approach

  • Dennis V. CokkinosEmail author


Systems biology is an attempt to explain and integrate the increasing quantity and complexity of data of every type, including biological, in order to explain their interrelationships. Two models the simpler linear and that of the network are used. The latter can integrate more complex data and is more resistant to perturbations. The models apply to components of biological systems but also transportation economy and social organizations.


Systems biology Ischemic heart disease Networks Linear pathways Random network Scale-free networks 


  1. 1.
    Lusis AJ, Weiss JN. Cardiovascular networks: systems-based approaches to cardiovascular disease. Circulation. 2010;121:157–70.CrossRefGoogle Scholar
  2. 2.
    Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet. 2001;2:343–72.CrossRefGoogle Scholar
  3. 3.
    Department of Systems Biology Harvard Medical School.
  4. 4.
    Lusis AJ. A thematic review series: systems biology approaches to metabolic and cardiovascular disorders. J Lipid Res. 2006;47:1887–90.CrossRefGoogle Scholar
  5. 5.
    Mayr M. From data gathering to systems medicine. Cardiovasc Res. 2013;97:599–600.CrossRefGoogle Scholar
  6. 6.
    Arrell DK, Terzic A. Systems proteomics for translational network medicine. Circ Cardiovasc Genet. 2012;5:478.CrossRefGoogle Scholar
  7. 7.
    Chautard E, Thierry-Mieg N, Ricard-Blum S. Interaction networks: from protein functions to drug discovery. A review. Pathol Biol (Paris). 2009;57:324–33.CrossRefGoogle Scholar
  8. 8.
    Chuang HY, Hofree M, Ideker T. A decade of systems biology. Annu Rev Cell Dev Biol. 2010;26:721–44.CrossRefGoogle Scholar
  9. 9.
    Shreenivasaiah PK, Rho SH, Kim T, Kim DH. An overview of cardiac systems biology. J Mol Cell Cardiol. 2008;44:460–9.CrossRefGoogle Scholar
  10. 10.
    Hidalgo CA, Blumm N, Barabási AL, Christakis NA. A dynamic network approach for the study of human phenotypes. PLoS Comput Biol. 2009;5:e1000353.CrossRefGoogle Scholar
  11. 11.
    Brutsaert D. Heart Failure: Quo Vadis Lecture presented at Cardiovascular Biotechnology: From cell to man Biomedical Research Foundation Academy of Athens, 31 May – 1 June 2013.Google Scholar
  12. 12.
    Kalamatianos D. MCQs Systems Biology Approaches and Applications in Cardiovascular Diseases. Introduction to Translational Cardiovascular Research, 25 Jan 2013.Google Scholar
  13. 13.
    Weiss JN, Yang L, Qu Z. Network perspectives of cardiovascular metabolism. J Lipid Res. 2006;47:2355–66.CrossRefGoogle Scholar
  14. 14.
    Barabási AL, Bonabeau E. Scale-free networks. Sci Am. 2003;288:60–9.CrossRefGoogle Scholar
  15. 15.
    Barabási AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004;5:101–13.CrossRefGoogle Scholar
  16. 16.
    Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. Hierarchical organization of modularity in metabolic networks. Science. 2002;297:1551–5.CrossRefGoogle Scholar
  17. 17.
    Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL. The large-scale organization of metabolic networks. Nature. 2000;407:651–4.CrossRefGoogle Scholar
  18. 18.
    Merton RK. The Matthew effect in science: the reward and communication systems of science are considered. Science. 1968;159(3810):56–63.CrossRefGoogle Scholar
  19. 19.
    Ramsey SA, Klemm SL, Zak DE, Kennedy KA, Thorsson V, Li B, et al. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput Biol. 2008;4:e1000021.CrossRefGoogle Scholar
  20. 20.
    Skogsberg J, Lundström J, Kovacs A, Nilsson R, Noori P, Maleki S, et al. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes. PLoS Genet. 2008;4:e1000036.CrossRefGoogle Scholar
  21. 21.
    Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, et al. Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci U S A. 2006;103:12741–6.CrossRefGoogle Scholar
  22. 22.
    Nadeau JH, Burrage LC, Restivo J, Pao YH, Churchill G, Hoit BD. Pleiotropy, homeostasis, and functional networks based on assays of cardiovascular traits in genetically randomized populations. Genome Res. 2003;13:2082–91.CrossRefGoogle Scholar
  23. 23.
    Machleder D, Ivandic B, Welch C, Castellani L, Reue K, Lusis AJ. Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism. J Clin Invest. 1997;99:1406–19.CrossRefGoogle Scholar
  24. 24.
    Lusis AJ, Attie AD, Reue K. Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet. 2008;9:819–30.CrossRefGoogle Scholar
  25. 25.
    Topol E. Textbook of cardiovascular medicine. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2007. Mentioned in Ref. [1].Google Scholar
  26. 26.
    Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol. 2007;3:124.CrossRefGoogle Scholar
  27. 27.
    Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys. 2001;63:066117.CrossRefGoogle Scholar
  28. 28.
    Eubank S, Guclu H, Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z. Modelling disease outbreaks in realistic urban social networks. Nature. 2004;429:180–4.CrossRefGoogle Scholar
  29. 29.
    Ergün A, Lawrence CA, Kohanski MA, Brennan TA, Collins JJ. A network biology approach to prostate cancer. Mol Syst Biol. 2007;3:82.CrossRefGoogle Scholar
  30. 30.
    Lim J, Hao T, Shaw C, Patel AJ, Szabó G, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell. 2006;125:801–14.CrossRefGoogle Scholar
  31. 31.
    Lu X, Jain VV, Finn PW, Perkins DL. Hubs in biological interaction networks exhibit low changes in expression in experimental asthma. Mol Syst Biol. 2007;3:98.CrossRefGoogle Scholar
  32. 32.
    Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol. 2006;2:52.CrossRefGoogle Scholar
  33. 33.
    Kitano H. A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov. 2007;6:202–10.CrossRefGoogle Scholar
  34. 34.
    Butcher EC, Berg EL, Kunkel EJ. Systems biology in drug discovery. Nat Biotechnol. 2004;22:1253–9.CrossRefGoogle Scholar
  35. 35.
    Huan T, Zhang B, Wang Z, Joehanes R, Zhu J, Johnson AD, et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler Thromb Vasc Biol. 2013;33:1427–34.CrossRefGoogle Scholar
  36. 36.
    West BJ, Geneston EL, Grigolini P. Maximizing information exchange between complex networks. Phys Rep. 2008;468:1–99.CrossRefGoogle Scholar
  37. 37.
    Geronikolou S, Pavlopoulou A, Albanopoulos K, Cokkinos D, Chrousos G. Kisspeptin and Stress induced obesidome. P052 IFSO 2018 eBook of Abstracts Springer 2018 p104. 8th Congress of the Int Fed for the surgery of obesity and metabolic disorders-eur chapter, Athens, May 17–19th 2018.Google Scholar
  38. 38.
    Kirschner MC. The meaning of systems biology. Cell. 2005;121:503–4.CrossRefGoogle Scholar
  39. 39.
    Noble D. Systems biology and the heart. Biosystems. 2006;83:75–80.CrossRefGoogle Scholar
  40. 40.
    Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conducting and excitation in nerve. J Physiol. 1952;117:500–44.CrossRefGoogle Scholar
  41. 41.
    Noble D. Cardiac action and pacemaker potentials based on the Hodgkin Huxley equations. Nature. 1960;188:495–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heart and Vessel DepartmentBiomedical Research Foundation, Academy of Athens - Gregory SkalkeasAthensGreece

Personalised recommendations