Advertisement

Gene Therapy in Cardiac Disease

  • Styliani Vakrou
  • Konstantinos Malliaras
Chapter

Abstract

To date, over 1000 patients have been enrolled in clinical trials of gene therapy for heart disease (either coronary artery disease or heart failure). Gene transfer has been associated with an excellent safety profile so far, regardless of vector or delivery methods. However, therapeutic efficacy has been underwhelming; large pivotal, randomized, placebo-controlled trials have failed to reproduce the efficacy signals observed in earlier-phase clinical testing, and primary endpoints have not been met. Importantly, low efficiency of gene transfer into cardiomyocytes appears to remain a significant obstacle. Moving forward, research efforts should focus on development of better vectors, more efficient delivery systems, deeper understanding of disease pathophysiology, and improved clinical trial design (including selection of appropriate dosages, patients, and endpoints). In this chapter, we first touch upon the basic principles of gene transfer for cardiac disease, including discussion of different vectors and delivery methods. We then critically review gene-based therapeutic interventions that have been tested clinically in patients, primarily focusing on randomized, placebo-controlled clinical trials.

Keywords

Gene therapy Plasmid Adenovirus Adeno-associated virus SERCA2a Adenylyl cyclase SDF-1 VEGF FGF4 Gene editing 

References

  1. 1.
    Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372 Epub 2018/01/13).  https://doi.org/10.1126/science.aan4672. PubMed PMID: 29326244.
  2. 2.
    Friedmann T, Roblin R. Gene therapy for human genetic disease? Science. 1972;175(4025):949–55. Epub 1972/03/03. PubMed PMID: 5061866.Google Scholar
  3. 3.
    Munyon W, Kraiselburd E, Davis D, Mann J. Transfer of thymidine kinase to thymidine kinaseless L cells by infection with ultraviolet-irradiated herpes simplex virus. J Virol. 1971;7(6):813–20. Epub 1971/06/01. PubMed PMID: 4327589; PubMed Central PMCID: PMCPMC356201.Google Scholar
  4. 4.
    Merril CR, Geier MR, Petricciani JC. Bacterial virus gene expression in human cells. Nature. 1971;233(5319):398–400. Epub 1971/10/08. PubMed PMID: 4940436.Google Scholar
  5. 5.
    Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science. 1995;270(5235):475–80. Epub 1995/10/20. PubMed PMID: 7570001.Google Scholar
  6. 6.
    Jenks S. Gene therapy death—“everyone has to share in the guilt”. J Natl Cancer Inst. 2000;92(2):98–100. Epub 2000/01/20. PubMed PMID: 10639505.Google Scholar
  7. 7.
    Orkin SH, Motulsky AG. Report and recommendations of the panel to assess the NIH investment in research on gene therapy; 1995.Google Scholar
  8. 8.
    Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. Epub 2006/11/30.  https://doi.org/10.1371/journal.pmed.0030442. PubMed PMID: 17132052; PubMed Central PMCID: PMCPMC1664601.
  9. 9.
    Fargnoli AS, Katz MG, Bridges CR, Hajjar RJ. Gene therapy in heart failure. Handb Exp Pharmacol. 2017;243:395–421. Epub 2016/11/01.  https://doi.org/10.1007/164_2016_81. PubMed PMID: 27796512.
  10. 10.
    Hulot JS, Ishikawa K, Hajjar RJ. Gene therapy for the treatment of heart failure: promise postponed. Eur Heart J. 2016;37(21):1651–8. Epub 2016/02/29.  https://doi.org/10.1093/eurheartj/ehw019. PubMed PMID: 26922809; PubMed Central PMCID: PMCPMC4887702.
  11. 11.
    Chung ES, Miller L, Patel AN, Anderson RD, Mendelsohn FO, Traverse J, et al. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial. Eur Heart J. 2015;36(33):2228–38. Epub 2015/06/10.  https://doi.org/10.1093/eurheartj/ehv254. PubMed PMID: 26056125; PubMed Central PMCID: PMCPMC4554960.
  12. 12.
  13. 13.
    Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation. 2003;107(10):1359–65. Epub 2003/03/19. PubMed PMID: 12642354.Google Scholar
  14. 14.
    Kastrup J, Jorgensen E, Ruck A, Tagil K, Glogar D, Ruzyllo W, et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris a randomized double-blind placebo-controlled study: the Euroinject one trial. J Am Coll Cardiol. 2005;45(7):982–8. Epub 2005/04/06.  https://doi.org/10.1016/j.jacc.2004.12.068. PubMed PMID: 15808751.
  15. 15.
    Stewart DJ, Kutryk MJ, Fitchett D, Freeman M, Camack N, Su Y, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Molecular Ther. 2009;17(6):1109–15. Epub 2009/04/09.  https://doi.org/10.1038/mt.2009.70. PubMed PMID: 19352324; PubMed Central PMCID: PMCPMC2835194.
  16. 16.
    Youn H, Chung JK. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert Opin Biol Ther. 2015;15(9):1337–48. Epub 2015/07/01.  https://doi.org/10.1517/14712598.2015.1057563. PubMed PMID: 26125492; PubMed Central PMCID: PMCPMC4696419.
  17. 17.
    Turnbull IC, Eltoukhy AA, Fish KM, Nonnenmacher M, Ishikawa K, Chen J, et al. Myocardial delivery of lipidoid nanoparticle carrying modRNA induces rapid and transient expression. Molecular Ther. 2016;24(1):66–75. Epub 2015/10/17.  https://doi.org/10.1038/mt.2015.193. PubMed PMID: 26471463; PubMed Central PMCID: PMCPMC4754552.
  18. 18.
    Zangi L, Lui KO, von Gise A, Ma Q, Ebina W, Ptaszek LM, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnol. 2013;31(10):898–907. Epub 2013/09/10.  https://doi.org/10.1038/nbt.2682. PubMed PMID: 24013197; PubMed Central PMCID: PMCPMC4058317.
  19. 19.
    Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75. Epub 2005/08/23.  https://doi.org/10.1016/j.immuni.2005.06.008. PubMed PMID: 16111635.
  20. 20.
    Alba R, Bosch A, Chillon M. Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther. 2005;12(Suppl 1):S18–27. Epub 2005/10/19.  https://doi.org/10.1038/sj.gt.3302612. PubMed PMID: 16231052.
  21. 21.
    Jooss K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther. 2003;10(11):955–63. Epub 2003/05/21.  https://doi.org/10.1038/sj.gt.3302037. PubMed PMID: 12756416.
  22. 22.
    Hammond HK, Penny WF, Traverse JH, Henry TD, Watkins MW, Yancy CW, et al. Intracoronary gene transfer of adenylyl cyclase 6 in patients with heart failure: a randomized clinical trial. JAMA Cardiol. 2016;1(2):163–71. Epub 2016/07/22.  https://doi.org/10.1001/jamacardio.2016.0008. PubMed PMID: 27437887; PubMed Central PMCID: PMCPMC5535743.
  23. 23.
    Hedman M, Hartikainen J, Syvanne M, Stjernvall J, Hedman A, Kivela A, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio angiogenesis trial (KAT). Circulation. 2003;107(21):2677–83. Epub 2003/05/14.  https://doi.org/10.1161/01.cir.0000070540.80780.92. PubMed PMID: 12742981.
  24. 24.
    Stewart DJ, Hilton JD, Arnold JM, Gregoire J, Rivard A, Archer SL, et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther. 2006;13(21):1503–11. Epub 2006/06/23.  https://doi.org/10.1038/sj.gt.3302802. PubMed PMID: 16791287.
  25. 25.
    Grines CL, Watkins MW, Helmer G, Penny W, Brinker J, Marmur JD, et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation. 2002;105(11):1291–7. Epub 2002/03/20. PubMed PMID: 11901038.Google Scholar
  26. 26.
    Grines CL, Watkins MW, Mahmarian JJ, Iskandrian AE, Rade JJ, Marrott P, et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol. 2003;42(8):1339–47. Epub 2003/10/18. PubMed PMID: 14563572.Google Scholar
  27. 27.
    Henry TD, Grines CL, Watkins MW, Dib N, Barbeau G, Moreadith R, et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol. 2007;50(11):1038–46. Epub 2007/09/11.  https://doi.org/10.1016/j.jacc.2007.06.010. PubMed PMID: 17825712.
  28. 28.
    Zsebo K, Yaroshinsky A, Rudy JJ, Wagner K, Greenberg B, Jessup M, et al. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res. 2014;114(1):101–8. Epub 2013/09/26.  https://doi.org/10.1161/circresaha.113.302421. PubMed PMID: 24065463.
  29. 29.
    Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular Ther. 2008;16(6):1073–80. Epub 2008/04/17.  https://doi.org/10.1038/mt.2008.76. PubMed PMID: 18414476.
  30. 30.
    Sakata S, Lebeche D, Sakata N, Sakata Y, Chemaly ER, Liang LF, et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol Cell Cardiol. 2007;42(4):852–61. Epub 2007/02/16.  https://doi.org/10.1016/j.yjmcc.2007.01.003. PubMed PMID: 17300800; PubMed Central PMCID: PMCPMC1945057.
  31. 31.
    Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail. 2009;15(3):171–81. Epub 2009/03/31.  https://doi.org/10.1016/j.cardfail.2009.01.013. PubMed PMID: 19327618; PubMed Central PMCID: PMCPMC2752875.
  32. 32.
    Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation. 2011;124(3):304–13. Epub 2011/06/29.  https://doi.org/10.1161/circulationaha.111.022889. PubMed PMID: 21709064; PubMed Central PMCID: PMCPMC5843948.
  33. 33.
  34. 34.
    Hulot JS, Salem JE, Redheuil A, Collet JP, Varnous S, Jourdain P, et al. Effect of intracoronary administration of AAV1/SERCA2a on ventricular remodelling in patients with advanced systolic heart failure: results from the AGENT-HF randomized phase 2 trial. Eur J Heart Fail. 2017;19(11):1534–41. Epub 2017/04/11.  https://doi.org/10.1002/ejhf.826. PubMed PMID: 28393439.
  35. 35.
    Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Desai AS, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet. 2016;387(10024):1178–86. Epub 2016/01/25.  https://doi.org/10.1016/s0140-6736(16)00082-9. PubMed PMID: 26803443.
  36. 36.
    Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Pogoda JM, et al. Prevalence of AAV1 neutralizing antibodies and consequences for a clinical trial of gene transfer for advanced heart failure. Gene Ther. 2016;23(3):313–9. Epub 2015/12/25.  https://doi.org/10.1038/gt.2015.109. PubMed PMID: 26699914.
  37. 37.
    Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ, Hui DJ, et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med. 2013;5(194):194ra92. Epub 2013/07/19.  https://doi.org/10.1126/scitranslmed.3005795. PubMed PMID: 23863832; PubMed Central PMCID: PMCPMC4095828.
  38. 38.
  39. 39.
    Woitek F, Zentilin L, Hoffman NE, Powers JC, Ottiger I, Parikh S, et al. Intracoronary cytoprotective gene therapy: a study of VEGF-B167 in a pre-clinical animal model of dilated cardiomyopathy. J Am Coll Cardiol. 2015;66(2):139–53. Epub 2015/07/15.  https://doi.org/10.1016/j.jacc.2015.04.071. PubMed PMID: 26160630; PubMed Central PMCID: PMCPMC4499859.
  40. 40.
    Raake P, von Degenfeld G, Hinkel R, Vachenauer R, Sandner T, Beller S, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol. 2004;44(5):1124–9. Epub 2004/09/01.  https://doi.org/10.1016/j.jacc.2004.05.074. PubMed PMID: 15337228.
  41. 41.
    Boekstegers P, von Degenfeld G, Giehrl W, Heinrich D, Hullin R, Kupatt C, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther. 2000;7(3):232–40. Epub 2000/03/01.  https://doi.org/10.1038/sj.gt.3301079. PubMed PMID: 10694800.
  42. 42.
    Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987;61(1):70–6. Epub 1987/07/01. PubMed PMID: 3608112.Google Scholar
  43. 43.
    Hasenfuss G, Pieske B. Calcium cycling in congestive heart failure. J Mol Cell Cardiol. 2002;34(8):951–69. Epub 2002/09/18. PubMed PMID: 12234765.Google Scholar
  44. 44.
    Lompre AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR. Ca2+ cycling and new therapeutic approaches for heart failure. Circulation. 2010;121(6):822–30. Epub 2010/02/04.  https://doi.org/10.1161/circulationaha.109.890954. PubMed PMID: 20124124; PubMed Central PMCID: PMCPMC2834781.
  45. 45.
    Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H, et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol. 2008;51(11):1112–9. Epub 2008/03/18.  https://doi.org/10.1016/j.jacc.2007.12.014. PubMed PMID: 18342232.
  46. 46.
    del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK, et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation. 2001;104(12):1424–9. Epub 2001/09/19. PubMed PMID: 11560860; PubMed Central PMCID: PMCPMC1249503.Google Scholar
  47. 47.
    Chu G, Kranias EG. Phospholamban as a therapeutic modality in heart failure. Novartis Found Symp. 2006;274:156–71. discussion 72–5, 272–6. Epub 2006/10/06. PubMed PMID: 17019811.Google Scholar
  48. 48.
    Koss KL, Kranias EG. Phospholamban: a prominent regulator of myocardial contractility. Circ Res. 1996;79(6):1059–63.  https://doi.org/10.1161/01.res.79.6.1059.
  49. 49.
    Kho C, Lee A, Jeong D, Oh JG, Chaanine AH, Kizana E, et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature. 2011;477(7366):601–5. Epub 2011/09/09.  https://doi.org/10.1038/nature10407. PubMed PMID: 21900893; PubMed Central PMCID: PMCPMC3443490.
  50. 50.
    Tilemann L, Lee A, Ishikawa K, Aguero J, Rapti K, Santos-Gallego C, et al. <em>SUMO-1</em> Gene Transfer improves cardiac function in a large-animal model of heart failure. Sci Transl Med. 2013;5(211):211ra159–9.  https://doi.org/10.1126/scitranslmed.3006487.
  51. 51.
    Ritterhoff J, Most P. Targeting S100A1 in heart failure. Gene Ther. 2012;19(6):613–21. Epub 2012/02/18.  https://doi.org/10.1038/gt.2012.8. PubMed PMID: 22336719.
  52. 52.
    Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J, et al. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation. 2006;114(12):1258–68.  https://doi.org/10.1161/circulationaha.106.622415.
  53. 53.
    Ishikawa K, Fish KM, Tilemann L, Rapti K, Aguero J, Santos-Gallego CG, et al. Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure. Molecular Ther. 2014;22(12):2038–45. Epub 2014/07/16.  https://doi.org/10.1038/mt.2014.127. PubMed PMID: 25023328; PubMed Central PMCID: PMCPMC4429688.
  54. 54.
    Pathak A, del Monte F, Zhao W, Schultz JE, Lorenz JN, Bodi I, et al. Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res. 2005;96(7):756–66. Epub 2005/03/05.  https://doi.org/10.1161/01.RES.0000161256.85833.fa. PubMed PMID: 15746443.
  55. 55.
    Watanabe S, Ishikawa K, Fish K, Oh JG, Motloch LJ, Kohlbrenner E, et al. Protein phosphatase inhibitor-1 gene therapy in a swine model of nonischemic heart failure. J Am Coll Cardiol. 2017;70(14):1744–56. Epub 2017/09/30.  https://doi.org/10.1016/j.jacc.2017.08.013. PubMed PMID: 28958332; PubMed Central PMCID: PMCPMC5807083.
  56. 56.
    Prunier F, Kawase Y, Gianni D, Scapin C, Danik SB, Ellinor PT, et al. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation. 2008;118(6):614–24. Epub 2008/07/23.  https://doi.org/10.1161/circulationaha.108.770883. PubMed PMID: 18645052.
  57. 57.
    Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, et al. Relation between myocardial function and expression of sarcoplasmic reticulum ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res. 1994;75(3):434–42. Epub 1994/09/01. PubMed PMID: 8062417.Google Scholar
  58. 58.
    Hadri L, Bobe R, Kawase Y, Ladage D, Ishikawa K, Atassi F, et al. SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells. Molecular Ther. 2010;18(7):1284–92. Epub 2010/05/13.  https://doi.org/10.1038/mt.2010.77. PubMed PMID: 20461063; PubMed Central PMCID: PMCPMC2911258.
  59. 59.
    Donahue JK. Cardiac gene therapy: a call for basic methods development. Lancet. 2016;387(10024):1137–9. Epub 2016/01/26.  https://doi.org/10.1016/s0140-6736(16)00149-5. PubMed PMID: 26806516.
  60. 60.
    Sunahara RK, Dessauer CW, Gilman AG. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol. 1996;36:461–80. Epub 1996/01/01.  https://doi.org/10.1146/annurev.pa.36.040196.002333. PubMed PMID: 8725398.
  61. 61.
    Gao MH, Tang T, Guo T, Sun SQ, Feramisco JR, Hammond HK. Adenylyl cyclase type VI gene transfer reduces phospholamban expression in cardiac myocytes via activating transcription factor 3. J Biol Chem. 2004;279(37):38797–802. Epub 2004/07/03.  https://doi.org/10.1074/jbc.M405701200. PubMed PMID: 15231818.
  62. 62.
    DiBianco R, Shabetai R, Kostuk W, Moran J, Schlant RC, Wright R. A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. N Engl J Med. 1989;320(11):677–83. Epub 1989/03/16.  https://doi.org/10.1056/nejm198903163201101. PubMed PMID: 2646536.
  63. 63.
    Ping P, Anzai T, Gao M, Hammond HK. Adenylyl cyclase and G protein receptor kinase expression during development of heart failure. Am J Phys. 1997;273(2 Pt 2):H707–17. Epub 1997/08/01.  https://doi.org/10.1152/ajpheart.1997.273.2.H707. PubMed PMID: 9277487.
  64. 64.
    Ishikawa Y, Sorota S, Kiuchi K, Shannon RP, Komamura K, Katsushika S, et al. Downregulation of adenylyl cyclase types V and VI mRNA levels in pacing-induced heart failure in dogs. J Clin Invest. 1994;93(5):2224–9. Epub 1994/05/01.  https://doi.org/10.1172/jci117219. PubMed PMID: 8182154; PubMed Central PMCID: PMCPMC294370.
  65. 65.
    Gao MH, Lai NC, Roth DM, Zhou J, Zhu J, Anzai T, et al. Adenylyl cyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation. 1999;99(12):1618–22. Epub 1999/03/30. PubMed PMID: 10096940.Google Scholar
  66. 66.
    Lai NC, Roth DM, Gao MH, Tang T, Dalton N, Lai YY, et al. Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation. 2004;110(3):330–6. Epub 2004/07/14.  https://doi.org/10.1161/01.cir.0000136033.21777.4d. PubMed PMID: 15249510.
  67. 67.
    Penny WF, Henry TD, Watkins MW, Patel AN, Hammond HK. Design of a Phase 3 trial of intracoronary administration of human adenovirus 5 encoding human adenylyl cyclase type 6 (RT-100) gene transfer in patients with heart failure with reduced left ventricular ejection fraction: the FLOURISH clinical trial. Am Heart J. 2018;201:111–6. Epub 2018/05/16.  https://doi.org/10.1016/j.ahj.2018.04.005. PubMed PMID: 29763816.
  68. 68.
  69. 69.
    Yla-Herttuala S, Bridges C, Katz MG, Korpisalo P. Angiogenic gene therapy in cardiovascular diseases: dream or vision? Eur Heart J. 2017;38(18):1365–71. Epub 2017/01/12.  https://doi.org/10.1093/eurheartj/ehw547. PubMed PMID: 28073865; PubMed Central PMCID: PMCPMC5837788.
  70. 70.
    Symes JF, Losordo DW, Vale PR, Lathi KG, Esakof DD, Mayskiy M, et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg. 1999;68(3):830–6 discussion 6-7. Epub 1999/10/06 PubMed PMID: 10509970.Google Scholar
  71. 71.
    Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW, et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation. 1999;100(5):468–74. Epub 1999/08/03. PubMed PMID: 10430759.Google Scholar
  72. 72.
    Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation. 2002;105(17):2012–8. Epub 2002/05/01. PubMed PMID: 11980678.Google Scholar
  73. 73.
    Yla-Herttuala S, Baker AH. Cardiovascular gene therapy: past, present, and future. Molecular Ther. 2017;25(5):1095–106. Epub 2017/04/09.  https://doi.org/10.1016/j.ymthe.2017.03.027. PubMed PMID: 28389321; PubMed Central PMCID: PMCPMC5417840.
  74. 74.
    Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362(9385):697–703. Epub 2003/09/06.  https://doi.org/10.1016/s0140-6736(03)14232-8. PubMed PMID: 12957092.
  75. 75.
    Penn MS, Pastore J, Miller T, Aras R. SDF-1 in myocardial repair. Gene Ther. 2012;19(6):583–7. Epub 2012/06/08.  https://doi.org/10.1038/gt.2012.32. PubMed PMID: 22673496.
  76. 76.
    Ghadge SK, Muhlstedt S, Ozcelik C, Bader M. SDF-1alpha as a therapeutic stem cell homing factor in myocardial infarction. Pharmacol Ther. 2011;129(1):97–108. Epub 2010/10/23.  https://doi.org/10.1016/j.pharmthera.2010.09.011. PubMed PMID: 20965212.
  77. 77.
    Sundararaman S, Miller TJ, Pastore JM, Kiedrowski M, Aras R, Penn MS. Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene Ther. 2011;18(9):867–73. Epub 2011/04/08.  https://doi.org/10.1038/gt.2011.18. PubMed PMID: 21472007; PubMed Central PMCID: PMCPMC3169804.
  78. 78.
    Segers VF, Tokunou T, Higgins LJ, MacGillivray C, Gannon J, Lee RT. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation. 2007;116(15):1683–92. Epub 2007/09/19.  https://doi.org/10.1161/circulationaha.107.718718. PubMed PMID: 17875967.
  79. 79.
    Malliaras K, Ibrahim A, Tseliou E, Liu W, Sun B, Middleton RC, et al. Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction. EMBO Mol Med. 2014;6(6):760–77. Epub 2014/05/07.  https://doi.org/10.1002/emmm.201303626. PubMed PMID: 24797668; PubMed Central PMCID: PMCPMC4203354.
  80. 80.
    Penn MS, Mendelsohn FO, Schaer GL, Sherman W, Farr M, Pastore J, et al. An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure. Circ Res. 2013;112(5):816–25. Epub 2013/02/23.  https://doi.org/10.1161/circresaha.111.300440. PubMed PMID: 23429605.
  81. 81.
    Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15(5):321–34. Epub 2014/04/03.  https://doi.org/10.1038/nrg3686. PubMed PMID: 24690881.
  82. 82.
    El Refaey M, Xu L, Gao Y, Canan BD, Adesanya TMA, Warner SC, Akagi K, Symer DE, Mohler PJ, Ma J, Janssen PML, Han R. In vivo genome editing restores dystrophin expression and cardiac function in dystrophic mice. Circ Res. 2017;121:923–9.  https://doi.org/10.1161/CIRCRESAHA.117.310996.
  83. 83.
    Amoasii L, Long C, Li H, Mireault AA, Shelton JM, Sanchez-Ortiz E, et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med. 2017;9(418 pii: eaan8081).  https://doi.org/10.1126/scitranslmed.aan8081.
  84. 84.
    King A. A CRISPR edit for heart disease. Nature. 2018;555(7695):S23–5.  https://doi.org/10.1038/d41586-018-02482-4.CrossRefPubMedGoogle Scholar
  85. 85.
    Naim C, Yerevanian A, Hajjar RJ. Gene therapy for heart failure: where do we stand? Curr Cardiol Rep. 2013;15(2):333.  https://doi.org/10.1007/s11886-012-0333-3.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Styliani Vakrou
    • 1
  • Konstantinos Malliaras
    • 1
  1. 1.Department of CardiologyLaikon HospitalAthensGreece

Personalised recommendations