Advertisement

Fibrosis–Inflammation of the Cardiovascular System

  • Evangelos Oikonomou
  • Dimitris Tousoulis
Chapter

Abstract

In recent years, inflammation has been revealed as a crucial underlying mechanism implicated in most cardiovascular diseases. Extracellular matrix remodeling and pathological fibrous formation (quantitative and qualitative) have been recognized as maladaptive tissue responses to most cardiovascular complications. Systemic inflammation plays an important role in the modulation of extracellular matrix degradation and regeneration. Left ventricular fibrosis and adverse remodeling in cardiomyopathies, in heart failure, and following myocardial infarction are major clinical conditions where inflammation is an essential mediator. Classical and novel treatments have been introduced to eliminate the interaction between inflammation and fibrosis in cardiovascular diseases.

Keywords

Fibrosis Inflammation Cardiovascular diseases Extracellular matrix Magnetic resonance Myocardial infarction Myocarditis Atrial fibrillation Heart failure 

References

  1. 1.
    Oikonomou E, Vogiatzi G, Tsalamandris S, et al. Non-natriuretic peptide biomarkers in heart failure with preserved and reduced ejection fraction. Biomark Med. 2018;12:783–97.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Oikonomou E, Tousoulis D. Inflammation: a pathogenetic mechanism or a mediator, linking risk factors and cardiovascular disease? Int J Cardiol. 2018;264:170–1.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brili S, Oikonomou E, Antonopoulos AS, et al. 18F-Fluorodeoxyglucose positron emission tomography/computed tomographic imaging detects aortic wall inflammation in patients with repaired coarctation of aorta. Circ Cardiovasc Imaging. 2018;11:e007002.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Antonopoulos AS, Papanikolaou E, Vogiatzi G, Oikonomou E, Tousoulis D. Anti-inflammatory agents in peripheral arterial disease. Curr Opin Pharmacol. 2017;39:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Tousoulis D, Oikonomou E, Economou EK, Crea F, Kaski JC. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J. 2016;37:1723–32.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Oikonomou E, Tousoulis D, Siasos G, Zaromitidou M, Papavassiliou AG, Stefanadis C. The role of inflammation in heart failure: new therapeutic approaches. Hell J Cardiol. 2011;52:30–40.Google Scholar
  7. 7.
    Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Suthahar N, Meijers WC, Sillje HHW, de Boer RA. From inflammation to fibrosis—molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14:235–50.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gawor M, Spiewak M, Kubik A, et al. Circulating biomarkers of hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy assessed by cardiac magnetic resonance. Biomarkers. 2018:1–7.  https://doi.org/10.1080/1354750X.2018.1474261.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Pedretti S, Vargiu S, Baroni M, et al. Complexity of scar and ventricular arrhythmias in dilated cardiomyopathy of any etiology: long-term data from the SCARFEAR (Cardiovascular Magnetic Resonance Predictors of Appropriate Implantable Cardioverter–Defibrillator Therapy Delivery) registry. Clin Cardiol. 2018;41:494–501.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Siasos G, Tousoulis D, Kioufis S, et al. Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases. Curr Top Med Chem. 2012;12:1132–48.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Siebermair J, Kholmovski EG, Marrouche N. Assessment of left atrial fibrosis by late gadolinium enhancement magnetic resonance imaging: methodology and clinical implications. JACC Clin Electrophysiol. 2017;3:791–802.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339:237–46.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009;61:198–223.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    McCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol. 2001;13:534–40.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Garcia-Touchard A, Henry TD, Sangiorgi G, et al. Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol. 2005;25:1119–27.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Plutzky J. The vascular biology of atherosclerosis. Am J Med. 2003;115(Suppl 8A):55S–61S.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Creemers EE, Cleutjens JP, Smits JF, Daemen MJ. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res. 2001;89:201–10.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90:251–62.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Corcoran ML, Stetler-Stevenson WG, DeWitt DL, Wahl LM. Effect of cholera toxin and pertussis toxin on prostaglandin H synthase-2, prostaglandin E2, and matrix metalloproteinase production by human monocytes. Arch Biochem Biophys. 1994;310:481–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94:2493–503.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Libby P, Galis ZS. Cytokines regulate genes involved in atherogenesis. Ann N Y Acad Sci. 1995;748:158–68. discussion 168–170.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wassenaar A, Verschoor T, Kievits F, et al. CD40 engagement modulates the production of matrix metalloproteinases by gingival fibroblasts. Clin Exp Immunol. 1999;115:161–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Feinberg MW, Jain MK, Werner F, et al. Transforming growth factor-beta 1 inhibits cytokine-mediated induction of human metalloelastase in macrophages. J Biol Chem. 2000;275:25766–73.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res. 2000;46:214–24.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lane WJ, Dias S, Hattori K, et al. Stromal-derived factor 1–induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood. 2000;96:4152–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Xu XP, Meisel SR, Ong JM, et al. Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte–derived macrophages. Circulation. 1999;99:993–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chen KC, Wang YS, Hu CY, et al. OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J. 2011;25:1718–28.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Okamoto T, Akaike T, Nagano T, et al. Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism for procollagenase activation involving nitric oxide. Arch Biochem Biophys. 1997;342:261–74.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ye S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol. 2000;19:623–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ben-Yosef Y, Lahat N, Shapiro S, Bitterman H, Miller A. Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ Res. 2002;90:784–91.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro: implications for atherosclerotic plaque stability. J Clin Invest. 1996;98:2572–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bassiouny HS, Song RH, Hong XF, Singh A, Kocharyan H, Glagov S. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation. 1998;98:157–63.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Godin D, Ivan E, Johnson C, Magid R, Galis ZS. Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model. Circulation. 2000;102:2861–6.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Chesler NC, Ku DN, Galis ZS. Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. Am J Phys. 1999;277:H2002–9.Google Scholar
  38. 38.
    Sundstrom J, Evans JC, Benjamin EJ, et al. Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation. 2004;109:2850–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Abboud RT, Fera T, Johal S, Richter A, Gibson N. Effect of smoking on plasma neutrophil elastase levels. J Lab Clin Med. 1986;108:294–300.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Sundstrom J, Evans JC, Benjamin EJ, et al. Relations of plasma total TIMP-1 levels to cardiovascular risk factors and echocardiographic measures: the Framingham Heart Study. Eur Heart J. 2004;25:1509–16.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Nakamura T, Ebihara I, Shimada N, Koide H. Effect of cigarette smoking on plasma metalloproteinase-9 concentration. Clin Chim Acta. 1998;276:173–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Koh KK, Ahn JY, Kang MH, et al. Effects of hormone replacement therapy on plaque stability, inflammation, and fibrinolysis in hypertensive or overweight postmenopausal women. Am J Cardiol. 2001;88:1423–6. A8PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kalela A, Ponnio M, Koivu TA, et al. Association of serum sialic acid and MMP-9 with lipids and inflammatory markers. Eur J Clin Investig. 2000;30:99–104.CrossRefGoogle Scholar
  44. 44.
    Marx N, Froehlich J, Siam L, et al. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23:283–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Papazafiropoulou A, Perrea D, Moyssakis I, Kokkinos A, Katsilambros N, Tentolouris N. Plasma levels of MMP-2, MMP-9 and TIMP-1 are not associated with arterial stiffness in subjects with type 2 diabetes mellitus. J Diabetes Complications. 2010;24:20–7.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Carlyle WC, Jacobson AW, Judd DL, et al. Delayed reperfusion alters matrix metalloproteinase activity and fibronectin mRNA expression in the infarct zone of the ligated rat heart. J Mol Cell Cardiol. 1997;29:2451–63.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol. 1995;27:1281–92.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Tyagi SC, Kumar SG, Haas SJ, et al. Post-transcriptional regulation of extracellular matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy. J Mol Cell Cardiol. 1996;28:1415–28.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Sato S, Ashraf M, Millard RW, Fujiwara H, Schwartz A. Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J Mol Cell Cardiol. 1983;15:261–75.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Danielsen CC, Wiggers H, Andersen HR. Increased amounts of collagenase and gelatinase in porcine myocardium following ischemia and reperfusion. J Mol Cell Cardiol. 1998;30:1431–42.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Heymans S, Luttun A, Nuyens D, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med. 1999;5:1135–42.CrossRefGoogle Scholar
  52. 52.
    Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106:55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ 3rd, Spinale FG. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation. 1998;97:1708–15.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tyagi SC, Kumar S, Voelker DJ, Reddy HK, Janicki JS, Curtis JJ. Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem. 1996;63:185–98.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res. 1998;82:482–95.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Li YY, Feldman AM, Sun Y, McTiernan CF. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation. 1998;98:1728–34.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Coker ML, Thomas CV, Clair MJ, et al. Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Phys 1998; 274:H1516–HH1523.CrossRefGoogle Scholar
  58. 58.
    Spinale FG, Coker ML, Krombach SR, et al. Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res. 1999;85:364–76.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Nakaya M, Watari K, Tajima M, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383–401.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11:255–65.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hohensinner PJ, Kaun C, Rychli K, et al. Monocyte chemoattractant protein (MCP-1) is expressed in human cardiac cells and is differentially regulated by inflammatory mediators and hypoxia. FEBS Lett. 2006;580:3532–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Gabriel AS, Martinsson A, Wretlind B, Ahnve S. IL-6 levels in acute and post myocardial infarction: their relation to CRP levels, infarction size, left ventricular systolic function, and heart failure. Eur J Intern Med. 2004;15:523–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Nah DY, Rhee MY. The inflammatory response and cardiac repair after myocardial infarction. Korean Circ J. 2009;39:393–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Meijers WC, van der Velde AR, Pascual-Figal DA, de Boer RA. Galectin-3 and post-myocardial infarction cardiac remodeling. Eur J Pharmacol. 2015;763:115–21.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74:184–95.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res. 2016;365:563–81.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wang Q, Wehrens XH. Connecting enterovirus infection to dystrophin dysfunction in dilated cardiomyopathy. Ann Transl Med. 2016;4:S23.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Corsten MF, Schroen B, Heymans S. Inflammation in viral myocarditis: friend or foe? Trends Mol Med. 2012;18:426–37.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Schwimmbeck PL, Rohn G, Wrusch A, et al. Enteroviral and immune mediated myocarditis in SCID mice. Herz. 2000;25:240–4.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Li K, Xu W, Guo Q, et al. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res. 2009;105:353–64.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Frantz S, Ducharme A, Sawyer D, et al. Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction. J Mol Cell Cardiol. 2003;35:685–94.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Diwan A, Dibbs Z, Nemoto S, et al. Targeted overexpression of noncleavable and secreted forms of tumor necrosis factor provokes disparate cardiac phenotypes. Circulation. 2004;109:262–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res. 2009;104:e9–18.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Frantz S, Hu K, Bayer B, et al. Absence of NF-kappaB subunit p50 improves heart failure after myocardial infarction. FASEB J. 2006;20:1918–20.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Authors/Task Force Members, Elliott PM, Anastasakis A, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79.CrossRefGoogle Scholar
  76. 76.
    Rudolph A, Abdel-Aty H, Bohl S, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol. 2009;53:284–91.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Moon JC, Reed E, Sheppard MN, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43:2260–4.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    O'Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ho CY, Lopez B, Coelho-Filho OR, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med. 2010;363:552–63.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol. 2016;32:659–68.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Bleakley C, Hamilton PK, Pumb R, Harbinson M, McVeigh GE. Endothelial function in hypertension: victim or culprit? J Clin Hypertens (Greenwich). 2015;17:651–4.CrossRefGoogle Scholar
  82. 82.
    Diez J. Mechanisms of cardiac fibrosis in hypertension. J Clin Hypertens (Greenwich). 2007;9:546–50.CrossRefGoogle Scholar
  83. 83.
    Gonzalez GE, Rhaleb NE, D'Ambrosio MA, et al. Deletion of interleukin-6 prevents cardiac inflammation, fibrosis and dysfunction without affecting blood pressure in angiotensin II–high salt-induced hypertension. J Hypertens. 2015;33:144–52.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51:802–9.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Mazaris S, Siasos G, Oikonomou E, et al. Atrial fibrillation: biomarkers determining prognosis. Curr Med Chem. Epub 2017 Jul 27.  https://doi.org/10.2174/0929867324666170727115642.
  86. 86.
    Lehoux S, Lemarie CA, Esposito B, Lijnen HR, Tedgui A. Pressure-induced matrix metalloproteinase-9 contributes to early hypertensive remodeling. Circulation. 2004;109:1041–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Thompson RW, Parks WC. Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann N Y Acad Sci. 1996;800:157–74.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Boden N, Cheng Y, Knowles PF. Equilibrium and non-equilibrium conformations of peptides in lipid bilayers. Biophys Chem. 1997;65:205–10.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Patel MI, Melrose J, Ghosh P, Appleberg M. Increased synthesis of matrix metalloproteinases by aortic smooth muscle cells is implicated in the etiopathogenesis of abdominal aortic aneurysms. J Vasc Surg. 1996;24:82–92.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    McMillan WD, Tamarina NA, Cipollone M, Johnson DA, Parker MA, Pearce WH. Size matters: the relationship between MMP-9 expression and aortic diameter. Circulation. 1997;96:2228–32.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Pyo R, Lee JK, Shipley JM, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest. 2000;105:1641–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312:117–21.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Brili S, Antonopoulos AS, Oikonomou E, et al. Impairment of arterial elastic properties and elevated circulating levels of transforming growth factor-beta in subjects with repaired coarctation of aorta. Int J Cardiol. 2016;207:282–3.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Bentzon JF, Weile C, Sondergaard CS, Hindkjaer J, Kassem M, Falk E. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:2696–702.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92:657–71.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Motoyama S, Ito H, Sarai M, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J Am Coll Cardiol. 2015;66:337–46.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Schaar JA, Muller JE, Falk E, et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J. 2004;25:1077–82.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939–43.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Arbustini E, Dal Bello B, Morbini P, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82:269–72.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Masci PG, Doulaptsis C, Bertella E, et al. Incremental prognostic value of myocardial fibrosis in patients with non-ischemic cardiomyopathy without congestive heart failure. Circ Heart Fail. 2014;7:448–56.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Eickelberg O, Roth M, Mussmann R, et al. Calcium channel blockers activate the interleukin-6 gene via the transcription factors NF-IL6 and NF-kappaB in primary human vascular smooth muscle cells. Circulation. 1999;99:2276–82.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Funck RC, Wilke A, Rupp H, Brilla CG. Regulation and role of myocardial collagen matrix remodeling in hypertensive heart disease. Adv Exp Med Biol. 1997;432:35–44.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Death AK, Nakhla S, McGrath KC, et al. Nitroglycerin upregulates matrix metalloproteinase expression by human macrophages. J Am Coll Cardiol. 2002;39:1943–50.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Tousoulis D, Antoniades C, Vasiliadou C, et al. Effects of atorvastatin and vitamin C on forearm hyperaemic blood flow, asymmetrical dimethylarginine levels and the inflammatory process in patients with type 2 diabetes mellitus. Heart. 2007;93:244–6.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Tousoulis D, Charakida M, Stefanadi E, Siasos G, Latsios G, Stefanadis C. Statins in heart failure: beyond the lipid lowering effect. Int J Cardiol. 2007;115:144–50.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Ikeda U, Shimpo M, Ohki R, et al. Fluvastatin inhibits matrix metalloproteinase-1 expression in human vascular endothelial cells. Hypertension. 2000;36:325–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Bellosta S, Via D, Canavesi M, et al. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol. 1998;18:1671–8.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation. 2001;103:926–33.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Cipollone F, Fazia M, Iezzi A, et al. Suppression of the functionally coupled cyclooxygenase-2/prostaglandin E synthase as a basis of simvastatin-dependent plaque stabilization in humans. Circulation. 2003;107:1479–85.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Li MJ, Huang CX, Okello E, Yanhong T, Mohamed S. Treatment with spironolactone for 24 weeks decreases the level of matrix metalloproteinases and improves cardiac function in patients with chronic heart failure of ischemic etiology. Can J Cardiol. 2009;25:523–6.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Weir RA, Mark PB, Petrie CJ, et al. Left ventricular remodeling after acute myocardial infarction: does eplerenone have an effect? Am Heart J. 2009;157:1088–96.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Derosa G, Maffioli P, D'Angelo A, et al. Effects of long chain omega-3 fatty acids on metalloproteinases and their inhibitors in combined dyslipidemia patients. Expert Opin Pharmacother. 2009;10:1239–47.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Oikonomou E, Vogiatzi G, Karlis D, et al. Effects of omega-3 polyunsaturated fatty acids on fibrosis, endothelial function and myocardial performance, in ischemic heart failure patients. Clin Nutr. Epub 2018 May 3.  https://doi.org/10.1016/j.clnu.2018.04.017.
  114. 114.
    Wu TC, Chen YH, Leu HB, et al. Carvedilol, a pharmacological antioxidant, inhibits neointimal matrix metalloproteinase-2 and -9 in experimental atherosclerosis. Free Radic Biol Med. 2007;43:1508–22.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Gonzalez GE, Cassaglia P, Noli Truant S, et al. Galectin-3 is essential for early wound healing and ventricular remodeling after myocardial infarction in mice. Int J Cardiol. 2014;176:1423–5.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Mason JW, O'Connell JB, Herskowitz A, et al. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med. 1995;333:269–75.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Herum KM, Lunde IG, Skrbic B, et al. Syndecan-4 is a key determinant of collagen cross-linking and passive myocardial stiffness in the pressure-overloaded heart. Cardiovasc Res. 2015;106:217–26.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Evangelos Oikonomou
    • 1
  • Dimitris Tousoulis
    • 1
  1. 1.1st Cardiology DepartmentHippokration Hospital, Athens University Medical SchoolAthensGreece

Personalised recommendations