Conditioning of the Myocardium

  • Dennis V. CokkinosEmail author


Conditioning is the approach of protecting the myocardium and other cells, tissues, and organs against noxious stimuli, especially ischemia, by applying these stimuli in smaller strength and for a shorter time. It is being applied in different situations such as angina, myocardial infarction and in invasive procedures including angioplasty, TAVR, and cardiac surgery. It can be applied pre-, during and post- the harmful stimulus, and either locally or in remote organs or limbs. Although the clinical results are not overwhelming; it is still being intensively investigated.


Conditioning Preconditioning Postconditioning Remote conditioning Cardioprotection SAFE pathway RISK pathway 


  1. 1.
    Hausenloy DJ, Yellon DM. Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol. 2016;13:193–209.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G. Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol. 2009;104:469–83.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB. Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Phys. 1986;251:H1306–15.Google Scholar
  5. 5.
    Baines CP, Pass JM, Ping P. Protein kinases and kinase-modulated effectors in the late phase of ischemic preconditioning. Basic Res Cardiol. 2001;96:207–18.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Downey JM, Cohen MV. Do mitochondrial K(ATP) channels serve as triggers rather than end-effectors of ischemic preconditioning's protection. Basic Res Cardiol. 2000:95272–4.Google Scholar
  7. 7.
    Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res. 1992:70223–33.Google Scholar
  8. 8.
    Downey JM, Cohen MV. Ischemic precondition. In: Cokkinos DV, Pantos C, Heusch G, Taegtmeyer H, editors. Myocardial ischemia: New York Springer; 2006. p. 99–112.Google Scholar
  9. 9.
    Baines CP, Cohen MV, Downey JM. Signal transduction in ischemic preconditioning: the role of kinases and mitochondrial K(ATP) channels. J Cardiovasc Electrophysiol. 1999;10:741–54.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Mocanu MM, Maddock HL, Baxter GF, Lawrence CL, Standen NB, Yellon DM. Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation. 2001;103:3111–6.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lawrence C, Rodrigo GC. A Na+−activated K+ current (IK, Na) is present in Guinea-pig but not rat ventricular myocytes. Pflugers Arch. 1999;437:831–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res. 1997;81:1072–82.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Grover GJ, Newburger J, Sleph PG, Dzwonczyk S, Taylor SC, Ahmed SZ, et al. Cardioprotective effects of the potassium channel opener cromakalim: stereoselectivity and effects on myocardial adenine nucleotides. J Pharmacol Exp Ther. 1991;257:156–62.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Grover GJ. Garlid KD.ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol. 2000;32:677–95.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Geisen K, Végh A, Krause E, Papp JG. Cardiovascular effects of conventional sulfonylureas and glimepiride. Horm Metab Res. 1996;28:496–507.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sato T, O'Rourke B, Marbán E. Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res. 1998;83:110–4.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Garlid KD. Opening mitochondrial K(ATP) in the heart--what happens, and what does not happen. Basic Res Cardiol. 2000;95:275–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Liu Y, Sato T, O'Rourke B, Marban E. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation. 1998;97:2463–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res. 2001;88:802–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, et al. Opening of mitochondrial K (ATP) channels triggers the preconditioned state by generating free radicals. Circ Res. 2000;87:460–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Iliodromitis EK, Andreadou I, Dagres N, Kremastinos DT. Pre- Peri- Post-Conditioning the ischemic myocardium: Challenges, Confounders and Expectations. Introduction to Translational Cardiovascular Research Cokkinos DV, editor. Cham Springer, 2015. p. 541–52.Google Scholar
  22. 22.
    Murry CE, Richard VJ, Jennings RB, Reimer KA. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Phys. 1991;260:H796–804.Google Scholar
  23. 23.
    Jennings RB, Sebbag L, Schwartz LM, Crago MS, Reimer KA. Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection. J Mol Cell Cardiol. 2001;33:1571–88.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Garcia-Dorado D, Théroux P, Duran JM, Solares J, Alonso J, Sanz E, et al. Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation. 1992;85:1160–74.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kolocassides KG, Galiñanes M, Hearse DJ. Dichotomy of ischemic preconditioning: improved postischemic contractile function despite intensification of ischemic contracture. Circulation. 1996;93:1725–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Xin W, Yang X, Rich TC, Krieg T, Barrington R, Cohen MV, et al. All preconditioning-related G protein-coupled receptors can be demonstrated in the rabbit cardiomyocyte. J Cardiovasc Pharmacol Ther. 2012;17:190–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol. 2005;288:H971–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G. Signal transduction of ischemic preconditioning. Cardiovasc Res. 2001;52:181–98.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Yang XP, Liu YH, Scicli GM, Webb CR, Carretero OA. Role of kinins in the cardioprotective effect of preconditioning: study of myocardial ischemia/reperfusion injury in B2 kinin receptor knockout mice and kininogen-deficient rats. Hypertension. 1997;30:735–40.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hattori R, Otani H, Uchiyama T, Imamura H, Cui J, Maulik N, et al. Src tyrosine kinase is the trigger but not the mediator of ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2001;281:H1066–74.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Krieg T, Qin Q, Philipp S, Alexeyev MF, Cohen MV, Downey JM. Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. Am J Physiol Heart Circ Physiol. 2004;287:H2606–11.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning - current knowledge and potential future applications after 30 years of experience. Adv Med Sci. 2017;62:307–16.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Vahlhaus C, Schulz R, Post H, Onallah R, Heusch G. No prevention of ischemic preconditioning by the protein kinase C inhibitor staurosporine in swine. Circ Res. 1996;79:407–14.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ytrehus K, Liu Y, Downey JM. Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Phys. 1994;266:H1145–52.Google Scholar
  35. 35.
    Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res. 2002;55:534–43.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Garcia-Dorado D, Inserte J, Ruiz-Meana M, González MA, Solares J, Juliá M, et al. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation. 1997;96:3579–86.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sun J. Protein S-nitrosylation: a role of nitric oxide signaling in cardiac ischemic preconditioning. Sheng Li Xue Bao. 2007;59:544–52.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Hausenloy DJ, Yellon DM. The second window of preconditioning (SWOP) where are we now? Cardiovasc Drugs Ther. 2010;24:235–54.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993;88:1264–72.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993;72:1293–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Szekeres L, Papp JG, Szilvássy Z, Udvary E, Vegh A. Moderate stress by cardiac pacing may induce both short term and long term cardioprotection. Cardiovasc Res. 1993;27:593–6.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yang F, Xi L. Postconditioning of ischemic heart by intermittent ventricular pacing at the beginning of reperfusion: novel mechanisms and potential utilities in interventional cardiology settings. Am J Physiol Heart Circ Physiol. 2016;310:H1–3.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Szekeres L. Drug-induced delayed cardiac protection against the effects of myocardial ischemia. Pharmacol Ther. 2005;108:269–80.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Szekeres L Exp Clin Cardiol 2000;5:116–21 underlines that late pre-C produced by stronger stressors. No archives available mentioned in Ref.Google Scholar
  45. 45.
    Domenech R, Macho P, Schwarze H, Sánchez G. Exercise induces early and late myocardial preconditioning in dogs. Cardiovasc Res. 2002;55:561–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005;46:450–6.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Baxter GF, Goma FM, Yellon DM. Characterisation of the infarct-limiting effect of delayed preconditioning: timecourse and dose-dependency studies in rabbit myocardium. Basic Res Cardiol. 1997;92:159–67.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Currie RW, Karmazyn M, Kloc M, Mailer K. Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res. 1988;63:543–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Müllenheim J, Schlack W, Frässdorf J, Heinen A, Preckel B, Thämer V. Additive protective effects of late and early ischaemic preconditioning are mediated by the opening of KATP channels in vivo. Pflugers Arch. 2001;442:178–87.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Stambaugh K, Elliott GT, Jacobson KA, Liang BT. Additive effects of late preconditioning produced by monophosphoryl lipid a and the early preconditioning mediated by adenosine receptors and KATP channel. Circulation. 1999;99:3300–7.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kaeffer N, Richard V, Thuillez C. Delayed coronary endothelial protection 24 hours after preconditioning: role of free radicals. Circulation. 1997;96:2311–6.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Guo Y, Stein AB, Wu WJ, Zhu X, Tan W, Li Q, Bolli R. Late preconditioning induced by NO donors, adenosine A1 receptor agonists, and delta1-opioid receptor agonists is mediated by iNOS. Am J Physiol Heart Circ Physiol. 2005;289:H2251–7.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Baxter GF, Marber MS, Patel VC, Yellon DM. Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation. 1994;90:2993–3000.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Dana A, Baxter GF, Walker JM, Yellon DM. Prolonging the delayed phase of myocardial protection: repetitive adenosine A1 receptor activation maintains rabbit myocardium in a preconditioned state. J Am Coll Cardiol. 1998;31:1142–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kositprapa C, Ockaili RA, Kukreja RC. Bradykinin B2 receptor is involved in the late phase of preconditioning in rabbit heart. J Mol Cell Cardiol. 2001;33:1355–62.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015;116:674–99.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Jaberansari MT, Baxter GF, Muller CA, Latouf SE, Röth E, Opie LH, et al. Angiotensin-converting enzyme inhibition enhances a subthreshold stimulus to elicit delayed preconditioning in pig myocardium. J Am Coll Cardiol. 2001;37:1996–2001.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Dana A, Skarli M, Papakrivopoulou J, Yellon DM. Adenosine a(1) receptor induced delayed preconditioning in rabbits: induction of p38 mitogen-activated protein kinase activation and Hsp27 phosphorylation via a tyrosine kinase- and protein kinase C-dependent mechanism. Circ Res. 2000;86:989–97.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Dana A, Jonassen AK, Yamashita N, Yellon DM. Adenosine a (1) receptor activation induces delayed preconditioning in rats mediated by manganese superoxide dismutase. Circulation. 2000;101:2841–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Bernardo NL, Okubo S, Maaieh MM, Wood MA, Kukreja RC. Delayed preconditioning with adenosine is mediated by opening of ATP-sensitive K(+) channels in rabbit heart. Am J Phys. 1999;277(1 Pt 2):H128–35.Google Scholar
  61. 61.
    Gross ER, Peart JN, Hsu AK, Auchampach JA, Gross GJ. Extending the cardioprotective window using a novel delta-opioid agonist fentanyl isothiocyanate via the PI3-kinase pathway. Am J Physiol Heart Circ Physiol. 2005;288:H2744–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Yu CK, Li YH, Wong GT, Wong TM, Irwin MG. Remifentanil preconditioning confers delayed cardioprotection in the rat. Br J Anaesth. 2007;99:632–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Bolli R, Li QH, Tang XL, Guo Y, Xuan YT, Rokosh G, et al. The late phase of preconditioning and its natural clinical application--gene therapy. Heart Fail Rev. 2007;12:189–99.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Qiu Y, Ping P, Tang XL, Manchikalapudi S, Rizvi A, Zhang J, et al. Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved. J Clin Invest. 1998;101:2182–98.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Vahlhaus C, Schulz R, Post H, Rose J, Heusch G. Prevention of ischemic preconditioning only by combined inhibition of protein kinase C and protein tyrosine kinase in pigs. J Mol Cell Cardiol. 1998;30:197–209.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Xuan YT, Guo Y, Han H, Zhu Y, Bolli R. An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci U S A. 2001;98:9050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, et al. IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res. 2004;64:61–71.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bolli R, Manchikalapudi S, Tang XL, Takano H, Qiu Y, Guo Y, et al. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Circ Res. 1997;81:1094–107.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Guo Y, Bao W, Wu WJ, Shinmura K, Tang XL, Bolli R. Evidence for an essential role of cyclooxygenase-2 as a mediator of the late phase of ischemic preconditioning in mice. Basic Res Cardiol. 2000;95:479–84.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zhou X, Zhai X, Ashraf M. Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation. 1996;93:1177–784.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Shinmura K, Bolli R, Liu SQ, Tang XL, Kodani E, Xuan YT, et al. Aldose reductase is an obligatory mediator of the late phase of ischemic preconditioning. Circ Res. 2002;91:240–6.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Brooks AC, Guo Y, Singh M, McCracken J, Xuan YT, Srivastava S, et al. Endoplasmic reticulum stress-dependent activation of ATF3 mediates the late phase of ischemic preconditioning. J Mol Cell Cardiol. 2014;76:138–47.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Heusch G, Schulz R, Rahimtoola SH. Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol. 2005;288:H984–99.CrossRefGoogle Scholar
  74. 74.
    Takano H, Manchikalapudi S, Tang XL, Qiu Y, Rizvi A, Jadoon AK, et al. Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in conscious rabbits. Circulation. 1998;98:441–9.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hu LF, Pan TT, Neo KL, Yong QC, Bian JS. Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Arch. 2008;455:971–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res. 2009;105:365–74.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sivarajah A, McDonald MC, Thiemermann C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock. 2006;26:154–61.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Sun JZ, Tang XL, Park SW, Qiu Y, Turrens JF, Bolli R. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest. 1996;97:562–76.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Gross ER, Peart JN, Hsu AK, Grover GJ, Gross GJ. K(ATP) opener-induced delayed cardioprotection: involvement of sarcolemmal and mitochondrial K(ATP) channels, free radicals and MEK1/2. J Mol Cell Cardiol. 2003;35:985–92.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Messing RO, et al. Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation. 2005;112:1971–8.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Maulik N, Watanabe M, Zu YL, Huang CK, Cordis GA, Schley JA, et al. Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett. 1996;396:233–7.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Fryer RM, Hsu AK, Gross GJ. ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection. Basic Res Cardiol. 2001;96:136–42.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kis A, Yellon DM, Baxter GF. Second window of protection following myocardial preconditioning: an essential role for PI3 kinase and p70S6 kinase. J Mol Cell Cardiol. 2003;35:1063–71.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, et al. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res. 1999;84:1095–109.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Li RC, Ping P, Zhang J, Wead WB, Cao X, Gao J, et al. PKCepsilon modulates NF-kappaB and AP-1 via mitogen-activated protein kinases in adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol. 2000;279:H1679–89.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation. 2003;108:79–85.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Jancsó G, Cserepes B, Gasz B, Benkó L, Borsiczky B, Ferenc A, et al. Expression and protective role of heme oxygenase-1 in delayed myocardial preconditioning. Ann N Y Acad Sci. 2007;1095:251–61.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Hausenloy D, Wynne A, Duchen M, Yellon D. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation. 2004;109:1714–7.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ardehali H, O'Rourke B. Mitochondrial K(ATP) channels in cell survival and death. J Mol Cell Cardiol. 2005;39:7–16.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Yin C, Wang X, Kukreja RC. Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett. 2008;582:4137–42.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res. 2009;104:572–5.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Varga ZV, Giricz Z, Bencsik P, Madonna R, Gyongyosi M, Schulz R, et al. Functional genomics of cardioprotection by ischemic conditioning and the influence of comorbid conditions: implications in target identification. Curr Drug Targets. 2015;16:904–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Onody A, Zvara A, Hackler L Jr, Vígh L, Ferdinandy P, Puskás LG. Effect of classic preconditioning on the gene expression pattern of rat hearts: a DNA microarray study. FEBS Lett. 2003;536:35–40.PubMedCrossRefGoogle Scholar
  94. 94.
    Das DK, Maulik N. Cardiac genomic response following preconditioning stimulus. Cardiovasc Res. 2006;70:254–63.PubMedCrossRefGoogle Scholar
  95. 95.
    Gidlöf O, Johnstone AL, Bader K, Khomtchouk BB, O'Reilly JJ, Celik S, et al. Ischemic preconditioning confers epigenetic repression of mTOR and induction of autophagy through G9a-dependent H3K9 dimethylation. J Am Heart Assoc. 2016;5Google Scholar
  96. 96.
    Stenzel-Poore MP, Stevens SL, Simon RP. Genomics of preconditioning. Stroke. 2004;35:2683–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. This is very interesting mechanism. Am J Physiol Heart Circ Physiol. 2003;285:H579–88.PubMedCrossRefGoogle Scholar
  98. 98.
    Buchholz B, Donato M, D'Annunzio V, Gelpi RJ. Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem. 2014;392:1–12.PubMedCrossRefGoogle Scholar
  99. 99.
    Bell RM, Yellon DM. Conditioning the whole heart--not just the cardiomyocyte. J Mol Cell Cardiol. 2012;53:24–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, et al. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the working Group of Cellular Biology of the heart of the European society of cardiology. Cardiovasc Res. 2010;87:406–23.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Donato M, D'Annunzio V, Berg G, Gonzalez G, Schreier L, Morales C, et al. Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+(ATP) channels in both normal and hypercholesterolemic rabbits. J Cardiovasc Pharmacol. 2007;49:287–92.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Buchholz B, D Annunzio V, Giani JF, Siachoque N, Dominici FP, Turyn D, et al. Ischemic postconditioning reduces infarct size through the α1-adrenergic receptor pathway. J Cardiovasc Pharmacol. 2014;63:504–11.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Inserte J, Barba I, Hernando V, Garcia-Dorado D. Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium. Cardiovasc Res. 2009;81:116–22.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Fujita M, Asanuma H, Hirata A, Wakeno M, Takahama H, Sasaki H, et al. Prolonged transient acidosis during early reperfusion contributes to the cardioprotective effects of postconditioning. Am J Physiol Heart Circ Physiol. 2007;292:H2004–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44:1103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, et al. Post-conditioning reduces infarct size in the isolated rat heart: role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol. 2006;101:168–79.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Inserte J, Hernando V, Vilardosa Ú, Abad E, Poncelas-Nozal M, Garcia-Dorado D. Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc. 2013;2:e005975.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Skyschally A, Gent S, Amanakis G, Schulte C, Kleinbongard P, Heusch G. Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by reperfusion injury salvage kinase and survival activating factor enhancement pathways. Circ Res. 2015;117:279–88.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, et al. Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res. 2009;104:15–18. However, according to the same group activation showed that the phosphorylation of the RISK pathway does not reduce infarct size (113).PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M. Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation. 2008;117:2761–18.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Lim SY, Davidson SM, Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res. 2007;75:530–5.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Crisostomo PR, Wairiuko GM, Wang M, Tsai BM, Morrell ED, Meldrum DR. Preconditioning versus postconditioning: mechanisms and therapeutic potentials. J Am Coll Surg. 2006;202:797–812.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Kin H, Zatta AJ, Lofye MT, Amerson BS, Halkos ME, Kerendi F, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res. 2005;67:124–33.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Mewton N, Ivanès F, Cour M, Ovize M. Postconditioning: from experimental proof to clinical concept. Dis Model Mech. 2010;3:39–44.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005;111:194–7.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Argaud L, Gomez L, Gateau-Roesch O, Couture-Lepetit E, Loufouat J, Robert D, et al. Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia-reperfusion injury. J Mol Cell Cardiol. 2005;39:893–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–62.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Shanmuganathan S, Hausenloy DJ, Duchen MR, Yellon DM. Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. Am J Physiol Heart Circ Physiol. 2005;28:H237–42.CrossRefGoogle Scholar
  119. 119.
    Bice JS, Baxter GF. Postconditioning signalling in the heart: mechanisms and translatability. Br J Pharmacol. 2015;172:1933–46.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Moriguchi A, Otani H, Yoshioka K, Shimazu T, Fujita M, Okazaki T, et al. Inhibition of contractile activity during postconditioning enhances cardioprotection by restoring sarcolemmal dystrophin through phosphatidylinositol 3-kinase. Circ J. 2010;74:2393–402.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Argaud L, Loufouat J, Gateau-Roesch O, Gomez L, Robert D, Ovize M. Persistent inhibition of mitochondrial permeability transition by preconditioning during the first hours of reperfusion. Shock. 2008;30:552–6.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004;62:74–85.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Roubille F, Franck-Miclo A, Covinhes A, Lafont C, Cransac F, Combes S, et al. Delayed postconditioning in the mouse heart in vivo. Circulation. 2011;124:1330–1336. Staat et al (128) applied 4 cycles of 1-minute ischemia.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L'Huillier I, et al. Postconditioning the human heart. Circulation. 2005;112:2143–8.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Sato H, Jordan JE, Zhao ZQ, Sarvotham SS, Vinten-Johansen J. Gradual reperfusion reduces infarct size and endothelial injury but augments neutrophil accumulation. Ann Thorac Surg. 1997;64:1099–107.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Okamoto F, Allen BS, Buckberg GD, Bugyi H, Leaf J. Reperfusion conditions: importance of ensuring gentle versus sudden reperfusion during relief of coronary occlusion. J Thorac Cardiovasc Surg. 1986;92:613–20.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Na HS, Kim YI, Yoon YW, Han HC, Nahm SH, Hong SK. Ventricular premature beat-driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischemia. Am Heart J. 1996;132:78–83.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Tian Y, Zhang W, Xia D, Modi P, Liang D, Wei M. Postconditioning inhibits myocardial apoptosis during prolonged reperfusion via a JAK2-STAT3-Bcl-2 pathway. J Biomed Sci. 2011;18:53.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kin H, Wang NP, Mykytenko J, Reeves J, Deneve J, Jiang R, et al. Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappa B translocation and TNF alpha release. Shock. 2008;29:761–8.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol. 2005;288:H1900–98.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Sun HY, Wang NP, Halkos M, Kerendi F, Kin H, Guyton RA, et al. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis. 2006;11:1583–93.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Engelman DT, Watanabe M, Engelman RM, Rousou JA, Flack JE 3rd, Deaton DW, et al. Constitutive nitric oxide release is impaired after ischemia and reperfusion. J Thorac Cardiovasc Surg. 1995;110:1047–53.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Zhao JL, Yang YJ, You SJ, Cui CJ, Gao RL. Different effects of postconditioning on myocardial no-reflow in the normal and hypercholesterolemic mini-swines. Microvasc Res. 2007;73:137–42.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Shinohara G, Morita K, Nagahori R, Koh Y, Kinouchi K, Abe T, et al. Ischemic postconditioning promotes left ventricular functional recovery after cardioplegic arrest in an in vivo piglet model of global ischemia reperfusion injury on cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2011;142:926–32.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Sasaki H, Shimizu M, Ogawa K, Okazaki F, Taniguchi M, Taniguchi I, et al. Brief ischemia-reperfusion performed after prolonged ischemia (ischemic postconditioning) can terminate reperfusion arrhythmias with no reduction of cardiac function in rats. Int Heart J. 2007;48:205–13.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Halkos ME, Kerendi F, Corvera JS, Wang NP, Kin H, Payne CS, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg. 2004;78:961–9. discussion 969.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Galagudza M, Kurapeev D, Minasian S, Valen G, Vaage J. Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur J Cardiothorac Surg. 2004;25:1006–10.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Maciel L, de Oliveira DF, Verissimo Da Costa GC, Bisch PM, Jhm N. Cardioprotection by the transfer of coronary effluent from ischaemic preconditioned rat hearts: identification of cardioprotective humoral factors. Basic Res Cardiol. 2017;112:152.CrossRefGoogle Scholar
  139. 139.
    Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87:893–9.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Birnbaum Y, Hale SL, Kloner RA. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation. 1997;96:1641–6.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002;106:2881–3.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Johnsen J, Pryds K, Salman R, Løfgren B, Kristiansen SB, Bøtker HE. The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection. Basic Res Cardiol. 2016;111:10.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Li GC, Vasquez JA, Gallagher KP, Lucchesi BR. Myocardial protection with preconditioning. Circulation. 1990;82:609–19.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Cohen MV, Yang XM, Downey JM. Conscious rabbits become tolerant to multiple episodes of ischemic preconditioning. Circ Res. 1994;74:998–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Iliodromitis EK, Kremastinos DT, Katritsis DG, Papadopoulos CC, Hearse DJ. Multiple cycles of preconditioning cause loss of protection in open-chest rabbits. J Mol Cell Cardiol. 1997;29:915–20.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Serejo FC, Rodrigues LF Jr, da Silva Tavares KC, de Carvalho AC, Nascimento JH. Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning. J Cardiovasc Pharmacol. 2007;49:214–20.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD. Myocardial protection by brief ischemia in noncardiac tissue. Circulation. 1996;94:2193–200.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Dickson EW, Reinhardt CP, Renzi FP, Becker RC, Porcaro WA, Heard SO. Ischemic preconditioning may be transferable via whole blood transfusion: preliminary evidence. J Thromb Thrombolysis. 1999;8:123–9.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, et al. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond). 2009;117:191–200.CrossRefGoogle Scholar
  150. 150.
    Gedik N, Kottenberg E, Thielmann M, Frey UH, Jakob H, Peters J, et al. Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Sci Rep. 2017;7:12660.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Maulik N, Engelman RM, Wei Z, Lu D, Rousou JA, Das DK. Interleukin-1 alpha preconditioning reduces myocardial ischemia reperfusion injury. Circulation. 1993;88:II387–94.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Nogae C, Makino N, Hata T, Nogae I, Takahashi S, Suzuki K, et al. Interleukin 1 alpha-induced expression of manganous superoxide dismutase reduces myocardial reperfusion injury in the rat. J Mol Cell Cardiol. 1995;27:2091–9.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Lim SY, Yellon DM, Hausenloy DJ. The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol. 2010;105:651–5.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Leung CH, Wang L, Nielsen JM, Tropak MB, Fu YY, Kato H, et al. Remote cardioprotection by transfer of coronary effluent from ischemic preconditioned rabbit heart preserves mitochondrial integrity and function via adenosine receptor activation. Cardiovasc Drugs Ther. 2014;28:7–17.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Dickson EW, Blehar DJ, Carraway RE, Heard SO, Steinberg G, Przyklenk K. Naloxone blocks transferred preconditioning in isolated rabbit hearts. J Mol Cell Cardiol. 2001;33:1751–6.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res. 2014;114:1601–10.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Schoemaker RG, van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol. 2000;278:H1571–6.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Davidson SM, Selvaraj P, He D, Boi-Doku C, Yellon RL, Vicencio JM, et al. Remote ischaemic preconditioning involves signalling through the SDF-1α/CXCR4 signalling axis. Basic Res Cardiol. 2013;108:377.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Brzozowski T, Konturek PC, Konturek SJ, Pajdo R, Kwiecien S, Pawlik M, et al. Ischemic preconditioning of remote organs attenuates gastric ischemia-reperfusion injury through involvement of prostaglandins and sensory nerves Eur J Pharmacol. 2004 Sep 19;499:201–213. Among the ubiquitous miRs, microRNA-144 has also been recently described (165).PubMedCrossRefGoogle Scholar
  160. 160.
    Li J, Rohailla S, Gelber N, Rutka J, Sabah N, Gladstone RA, et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol. 2014;109:423.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Ding YF, Zhang MM, He RR. Role of renal nerve in cardioprotection provided by renal ischemic preconditioning in anesthetized rabbits. Sheng Li Xue Bao. 2001;53:7–12.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Dong JH, Liu YX, Zhao J, Ma HJ, Guo SM, He RR. High-frequency electrical stimulation of femoral nerve reduces infarct size following myocardial ischemia-reperfusion in rats. Sheng Li Xue Bao. 2004;56:620–4.PubMedGoogle Scholar
  163. 163.
    Donato M, Buchholz B, Rodríguez M, Pérez V, Inserte J, García-Dorado D, et al. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol. 2013;98:425–34.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Pickard JM, Bøtker HE, Crimi G, Davidson B, Davidson SM, Dutka D, et al. Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th biennial hatter cardiovascular institute workshop. Basic Res Cardiol. 2015;110:453.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ. Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol Heart Circ Physiol. 2002;283:H29–37.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Wolfrum S, Schneider K, Heidbreder M, Nienstedt J, Dominiak P, Dendorfer A. Remote preconditioning protects the heart by activating myocardial PKCepsilon-isoform. Cardiovasc Res. 2002;55:583–9.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Kloner RA, Rezkalla SH. Preconditioning, postconditioning and their application to clinical cardiology. Cardiovasc Res. 2006;70:297–307.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Laskey WK. Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: a pilot study. Catheter Cardiovasc Interv. 2005;65:361–7.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Schmidt MR, Redington A, Bøtker HE. Remote conditioning the heart overview: translatability and mechanism. Br J Pharmacol. 2015;172:1947–60.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Kharbanda RK, Peters M, Walton B, Kattenhorn M, Mullen M, Klein N, et al. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo. Circulation. 2001;103:1624–30.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Loukogeorgakis SP, Panagiotidou AT, Yellon DM, Deanfield JE, MacAllister RJ. Postconditioning protects against endothelial ischemia-reperfusion injury in the human forearm. Circulation. 2006;113:1015–9.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    McLeod SL, Iansavichene A, Cheskes S. Remote ischemic perconditioning to reduce reperfusion injury during acute ST-segment-elevation myocardial infarction: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6Google Scholar
  173. 173.
    Thijssen D, Maxwell J, Green DJ, Cable NT, Jones H. Repeated ischaemic preconditioning: a novel therapeutic intervention and potential underlying mechanisms. Exp Physiol. 2016;101:677–92.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Wei M, Xin P, Li S, Tao J, Li Y, Li J, et al. Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Circ Res. 2011;108:1220–5.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Xu WQ, Yu Z, Xie Y, Huang GQ, Shu XH, Zhu Y, et al. Therapeutic effect of intermittent hypobaric hypoxia on myocardial infarction in rats. Basic Res Cardiol. 2011;106:329–42.PubMedCrossRefGoogle Scholar
  176. 176.
    Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007;59:418–58.PubMedCrossRefGoogle Scholar
  177. 177.
    Moolman JA, Genade S, Tromp E, Opie LH, Lochner A. Ischaemic preconditioning does not protect hypertrophied myocardium against ischaemia. S Afr Med J. 1997;87(Suppl 3):C151–6.PubMedGoogle Scholar
  178. 178.
    Brooks WW, Shen SS, Conrad CH, Goldstein RH, Bing OH. Transition from compensated hypertrophy to systolic heart failure in the spontaneously hypertensive rat: structure, function, and transcript analysis. Genomics. 2010;95:84–92.PubMedCrossRefGoogle Scholar
  179. 179.
    Speechly-Dick ME, Baxter GF, Yellon DM. Ischaemic preconditioning protects hypertrophied myocardium. Cardiovasc Res. 1994;28:1025–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Pantos CI, Davos CH, Carageorgiou HC, Varonos DV, Cokkinos DV. Ischaemic preconditioning protects against myocardial dysfunction caused by ischaemia in isolated hypertrophied rat hearts. Basic Res Cardiol. 1996;91:444–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Rajesh KG, Sasaguri S, Suzuki R, Xing Y, Maeda H. Ischemic preconditioning prevents reperfusion heart injury in cardiac hypertrophy by activation of mitochondrial KATP channels. Int J Cardiol. 2004;96:41–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Butler KL, Huang AH, Gwathmey JK. AT1-receptor blockade enhances ischemic preconditioning in hypertrophied rat myocardium. Am J Phys. 1999;277:H2482–7.Google Scholar
  183. 183.
    Behr TM, Nerurkar SS, Nelson AH, Coatney RW, Woods TN, Sulpizio A, et al. Hypertensive end-organ damage and premature mortality are p38 mitogen-activated protein kinase-dependent in a rat model of cardiac hypertrophy and dysfunction. Circulation. 2001;104:1292–8.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Voucharas C, Lazou A, Triposkiadis F, Tsilimingas N. Remote preconditioning in normal and hypertrophic rat hearts. J Cardiothorac Surg. 2011;6:34.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Abete P, Ferrara N, Cioppa A, Ferrara P, Bianco S, Calabrese C, et al. Preconditioning does not prevent postischemic dysfunction in aging heart. J Am Coll Cardiol. 1996;27:1777–86.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Tani M, Honma Y, Hasegawa H, Tamaki K. Direct activation of mitochondrial K(ATP) channels mimics preconditioning but protein kinase C activation is less effective in middle-aged rat hearts. Cardiovasc Res. 2001;49:56–68.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Tomai F, Crea F, Ghini AS, Proietti I, Gaspardone A, Versaci F, et al. Ischemic preconditioning during coronary angioplasty is preserved in elderly patients. Ital Heart J. 2000;1:562–8.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Abete P, Cacciatore F, Testa G, Della-Morte D, Galizia G, Ferrara N, et al. Clinical application of ischemic preconditioning in the elderly. Dose Response. 2009;8:34–40.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Fenton RA, Dickson EW, Meyer TE, Dobson JG Jr. Aging reduces the cardioprotective effect of ischemic preconditioning in the rat heart. J Mol Cell Cardiol. 2000;32:1371–15.PubMedCrossRefGoogle Scholar
  190. 190.
    Bartling B, Friedrich I, Silber RE, Simm A. Ischemic preconditioning is not cardioprotective in senescent human myocardium. Ann Thorac Surg. 2003;76:105–11.PubMedCrossRefGoogle Scholar
  191. 191.
    Longobardi G, Abete P, Ferrara N, Papa A, Rosiello R, Furgi G, et al. “Warm-up” phenomenon in adult and elderly patients with coronary artery disease: further evidence of the loss of “ischemic preconditioning” in the aging heart. J Gerontol A Biol Sci Med Sci. 2000;55:M124–9. CrossRefGoogle Scholar
  192. 192.
    Wu ZK, Pehkonen E, Laurikka J, Kaukinen L, Honkonen EL, Kaukinen S, et al. The protective effects of preconditioning decline in aged patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2001;122:972–8.PubMedCrossRefGoogle Scholar
  193. 193.
    Ebrahim Z, Yellon DM, Baxter GF. Ischemic preconditioning is lost in aging hypertensive rat heart: independent effects of aging and longstanding hypertension. Exp Gerontol. 2007;42:807–14.PubMedCrossRefGoogle Scholar
  194. 194.
    Abete P, Ferrara N, Cacciatore F, Madrid A, Bianco S, Calabrese C, et al. Angina-induced protection against myocardial infarction in adult and elderly patients: a loss of preconditioning mechanism in the aging heart? J Am Coll Cardiol. 1997;30:947–54. PubMedCrossRefGoogle Scholar
  195. 195.
    Ye JX, Chen DZ. Novel cardioprotective strategy combining three different preconditioning methods to prevent ischemia/reperfusion injury in aged hearts in an improved rabbit model. Exp Ther Med. 2015;10:1339–47.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Baker JE, Holman P, Gross GJ. Preconditioning in immature rabbit hearts: role of KATP channels. Circulation. 1999;99:1249–54.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Baker EJ, Boerboom LE, Olinger GN, Baker JE. Tolerance of the developing heart to ischemia: impact of hypoxemia from birth. Am J Phys. 1995;268:H1165–73.Google Scholar
  198. 198.
    Awad WI, Shattock MJ, Chambers DJ. Ischemic preconditioning in immature myocardium. Circulation. 1998;98:II206–13.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Iwaki K, Chi SH, Dillmann WH, Mestril R. Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress. Circulation. 1993;87:2023–32.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Ostádalová I, Ostádal B, Jarkovská D, Kolár F. Ischemic preconditioning in chronically hypoxic neonatal rat heart. Pediatr Res. 2002;52:561–7.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Ostadalova B, Ostadalova I, Kolar F, Sedmera D. Developmental determinants of cardiac sensitivity to hypoxia. Can J Physiol Pharmacol. 2014;92:566–74.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Tosaki A, Engelman DT, Engelman RM, Das DK. The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. Cardiovasc Res. 1996;31:526–36.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Hadour G, Ferrera R, Sebbag L, Forrat R, Delaye J, de Lorgeril M. Improved myocardial tolerance to ischaemia in the diabetic rabbit. J Mol Cell Cardiol. 1998;30:1869–75.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Liu Y, Thornton JD, Cohen MV, Downey JM, Schaffer SW. Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction. Circulation. 1993;88:1273–8.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, et al. Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001;280:H1744–50.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol. 2000;278:H1218–24.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Ebel D, Müllenheim J, Frässdorf J, Heinen A, Huhn R, Bohlen T, et al. Effect of acute hyperglycaemia and diabetes mellitus with and without short-term insulin treatment on myocardial ischaemic late preconditioning in the rabbit heart in vivo. Pflugers Arch. 2003;446:175–82.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Kristiansen SB, Løfgren B, Støttrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT, et al. Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia. 2004;47:1716–21.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Ravingerová T, Stetka R, Pancza D, Ulicná O, Ziegelhöffer A, Styk J. Susceptibility to ischemia-induced arrhythmias and the effect of preconditioning in the diabetic rat heart. Physiol Res. 2000;49:607–16.PubMedPubMedCentralGoogle Scholar
  210. 210.
    del Valle HF, Lascano EC, Negroni JA, Crottogini AJ. Absence of ischemic preconditioning protection in diabetic sheep hearts: role of sarcolemmal KATP channel dysfunction. Mol Cell Biochem. 2003;249:21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Lee TM, Chou TF. Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab. 2003;88:531–7.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM. Preconditioning the diabetic heart - the importance of Akt phosphorylation. Diabetes. 2005;54:2360–4.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Ishihara M, Sato H, Tateishi H, Kawagoe T, Shimatani Y, Kurisu S, et al. Implications of prodromal angina pectoris in anterior wall acute myocardial infarction: acute angiographic findings and long-term prognosis. J Am Coll Cardiol. 1997;30:970–5.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Szekeres L, Szilvássy Z, Ferdinandy P, Nagy I, Karcsu S, Csáti S. Delayed cardiac protection against harmful consequences of stress can be induced in experimental atherosclerosis in rabbits. J Mol Cell Cardiol. 1997;29:1977–83.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Kremastinos DT, Bofilis E, Karavolias GK, Papalois A, Kaklamanis L, Iliodromitis EK. Preconditioning limits myocardial infarct size in hypercholesterolemic rabbits. Atherosclerosis. 2000;150:81–9.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Iliodromitis EK, Zoga A, Vrettou A, Andreadou I, Paraskevaidis IA, Kaklamanis L, et al. The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis. 2006;188:356–62.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Szilvassy Z, Ferdinandy P, Szilvassy J, Nagy I, Karcsu S, Lonovics J, et al. The loss of pacing-induced preconditioning in atherosclerotic rabbits: role of hypercholesterolaemia. J Mol Cell Cardiol. 1995;27:2559–69.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Ueda Y, Kitakaze M, Komamura K, Minamino T, Asanuma H, Sato H, et al. Pravastatin restored the infarct size-limiting effect of ischemic preconditioning blunted by hypercholesterolemia in the rabbit model of myocardial infarction. J Am Coll Cardiol. 1999;34:2120–05.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Juhasz B, Der P, Turoczi T, Bacskay I, Varga E, Tosaki A. Preconditioning in intact and previously diseased myocardium: laboratory or clinical dilemma? Antioxid Redox Signal. 2004;6:325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Kyriakides ZS, Psychari S, Iliodromitis EK, Kolettis TM, Sbarouni E, Kremastinos DT. Hyperlipidemia prevents the expected reduction of myocardial ischemia on repeated balloon inflations during angioplasty. Chest. 2002;121:1211–5.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Ungi I, Ungi T, Ruzsa Z, Nagy E, Zimmermann Z, Csont T, et al. Hypercholesterolemia attenuates the anti-ischemic effect of preconditioning during coronary angioplasty. Chest. 2005;128:1623–8.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Di Napoli P, Antonio Taccardi A, Grilli A, Spina R, Felaco M, Barsotti A, et al. Simvastatin reduces reperfusion injury by modulating nitric oxide synthase expression: an ex vivo study in isolated working rat hearts. Cardiovasc Res. 2001;51:283–93.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Fan Y, Yang S, Cao Y, Huang Y. Effects of acute and chronic atorvastatin on cardioprotection of ischemic postconditioning in isolated rat hearts. Cardiovasc Ther. 2013;31:187–92.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Pantos C, Cokkinos DD, Tzeis SM, Malliopoulou V, Mourouzis IS, Carageorgiou HC, et al. Hyperthyroidism is associated with preserved preconditioning capacity but intensified and accelerated ischaemic contracture in rat heart. Basic Res Cardiol. 1999;94:254–60.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Pantos C, Malliopoulou V, Mourouzis I, Thempeyioti A, Paizis I, Dimopoulos A, et al. Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm Metab Res. 2006;38:308–13.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Pantos C, Malliopoulou V, Mourouzis I, Sfakianoudis K, Tzeis S, Doumba P, et al. Propylthiouracil-induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia-reperfusion. J Endocrinol. 2003;178:427–35.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Mourouzis I, Dimopoulos A, Saranteas T, Tsinarakis N, Livadarou E, Spanou D, et al. Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart. Physiol Res. 2009;58:29–38.PubMedPubMedCentralGoogle Scholar
  228. 228.
    Dekker LR, Rademaker H, Vermeulen JT, Opthof T, Coronel R, Spaan JA, et al. Cellular uncoupling during ischemia in hypertrophied and failing rabbit ventricular myocardium: effects of preconditioning. Circulation. 1998;97:1724–30.PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Ghosh S, Standen NB, Galiñianes M. Failure to precondition pathological human myocardium. J Am Coll Cardiol. 2001;37:711–8.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Miki T, Miura T, Tsuchida A, Nakano A, Hasegawa T, Fukuma T, et al. Cardioprotective mechanism of ischemic preconditioning is impaired by postinfarct ventricular remodeling through angiotensin II type 1 receptor activation. Circulation. 2000;102:458–63.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Pantos C, Mourouzis I, Dimopoulos A, Markakis K, Panagiotou M, Xinaris C, et al. Enhanced tolerance of the rat myocardium to ischemia and reperfusion injury early after acute myocardial infarction. Basic Res Cardiol. 2007;102:327–33.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Masoud WG, Abo Al-Rob O, Yang Y, Lopaschuk GD, Clanachan AS. Tolerance to ischaemic injury in remodelled mouse hearts: less ischaemic glycogenolysis and preserved metabolic efficiency. Cardiovasc Res. 2015;107:499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Hu Q, Suzuki G, Young RF, Page BJ, Fallavollita JA, Canty JM Jr. Reductions in mitochondrial O(2) consumption and preservation of high-energy phosphate levels after simulated ischemia in chronic hibernating myocardium. Am J Physiol Heart Circ Physiol. 2009;297:H223–32.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Yan L, Kudej RK, Vatner DE, Vatner SF. Myocardial ischemic protection in natural mammalian hibernation. Basic Res Cardiol. 2015;110:9.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Hata T, et al. Ischaemic preconditioning effect of prodromal angina pectoris is lost in patients with prior myocardial infarction. Heart. 2006;92:973–4.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Nishizawa K, Yano T, Tanno M, Miki T, Kuno A, Tobisawa T, et al. Chronic treatment with an erythropoietin receptor ligand prevents chronic kidney disease-induced enlargement of myocardial infarct size. Hypertension. 2016;68:697–706.PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, et al. Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol. 2006;101:180–9.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Fantinelli JC, Mosca SM. Comparative effects of ischemic pre and postconditioning on ischemia-reperfusion injury in spontaneously hypertensive rats (SHR). Mol Cell Biochem. 2007;296:45–51.PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, Marais DW, et al. Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol. 2009;297:H1729–35.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Przyklenk K, Maynard M, Greiner DL, Whittaker P. Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal. 2011;14:781–90.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Oosterlinck W, Dresselaers T, Geldhof V, Nevelsteen I, Janssens S, Himmelreich U, et al. Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning. J Thorac Cardiovasc Surg. 2013;145:1595–602.PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Hjortbak MV, Hjort J, Povlsen JA, Jensen VR, Støttrup NB, Laursen MR, et al. Influence of diabetes mellitus duration on the efficacy of ischemic preconditioning in a Zucker diabetic fatty rat model. PLoS One. 2018;13:e0192981. Published online 2018 Feb 23. Scholar
  243. 243.
    Zhu SG, Xi L, Kukreja RC. Type 2 diabetic obese db/db mice are refractory to myocardial ischaemic post-conditioning in vivo: potential role for Hsp20, F1-ATPase δ and Echs1. J Cell Mol Med. 2012;16:950–8.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Er F, Nia AM, Dopp H, Hellmich M, Dahlem KM, Caglayan E, et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro trial (renal protection trial). Circulation. 2012;126:296–303.PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Zimmerman RF, Ezeanuna PU, Kane JC, Cleland CD, Kempananjappa TJ, Lucas FL, et al. Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int. 2011;80:861–7.PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Venugopal V, Laing CM, Ludman A, Yellon DM, Hausenloy D. Effect of remote ischemic preconditioning on acute kidney injury in nondiabetic patients undergoing coronary artery bypass graft surgery: a secondary analysis of 2 small randomized trials. Am J Kidney Dis. 2010;56:1043–9.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Mergenthaler P, Dirnagl U. Protective conditioning of the brain: expressway or roadblock? J Physiol. 2011;589:4147–55.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Hess DC, Hoda MN, Bhatia K. Remote limb perconditioning [corrected] and postconditioning: will it translate into a promising treatment for acute stroke? Stroke. 2013;44:1191–7.PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Gidday J. Cerebrovascular ischemic protection by pre- and post-conditioning. Brain Circ. 2015;1:97–103.CrossRefGoogle Scholar
  250. 250.
    Xu J, Sun S, Lu X, Hu X, Yang M, Tang W. Remote ischemic pre- and postconditioning improve postresuscitation myocardial and cerebral function in a rat model of cardiac arrest and resuscitation. Crit Care Med. 2015;43:e12–8.PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Meng R, Asmaro K, Meng L, Liu Y, Ma C, Xi C, et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012;79:1853–61.PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Lloris-Carsí JM, Cejalvo D, Toledo-Pereyra LH, Calvo MA, Suzuki S. Preconditioning: effect upon lesion modulation in warm liver ischemia. Transplant Proc. 1993;25:3303–4.PubMedPubMedCentralGoogle Scholar
  253. 253.
    Yin DP, Sankary HN, Chong AS, Ma LL, Shen J, Foster P, Williams JW. Protective effect of ischemic preconditioning on liver preservation-reperfusion injury in rats. Transplantation. 1998;66:152–7.PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Koti RS, Seifalian AM, Davidson BR. Protection of the liver by ischemic preconditioning: a review of mechanisms and clinical applications. Dig Surg. 2003;20:383–96.PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Hardy KJ, McClure DN, Subwongcharoen S. Ischaemic preconditioning of the liver: a preliminary study. Aust N Z J Surg. 1996;6:707–10.CrossRefGoogle Scholar
  256. 256.
    Soncul H, Oz E, Kalaycioglu S. Role of ischemic preconditioning on ischemia-reperfusion injury of the lung. Chest. 1999;115:1672–7.PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Erling Junior N, Montero EF, Sannomiya P, Poli-De-Figueiredo LF. Local and remote ischemic preconditioning protect against intestinal ischemic/reperfusion injury after supraceliac aortic clamping. Clinics (Sao Paulo). 2013;68:1548–54.CrossRefGoogle Scholar
  258. 258.
    Selimoglu O, Ugurlucan M, Basaran M, Gungor F, Banach M, Cucu O, et al. Efficacy of remote ischaemic preconditioning for spinal cord protection against ischaemic injury: association with heat shock protein expression. Folia Neuropathol. 2008;46:204–12.PubMedPubMedCentralGoogle Scholar
  259. 259.
    Dong HL, Zhang Y, Su BX, Zhu ZH, Gu QH, Sang HF, et al. Limb remote ischemic preconditioning protects the spinal cord from ischemia-reperfusion injury: a newly identified nonneuronal but reactive oxygen species-dependent pathway. Anesthesiology. 2010;112:881–91.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Toumpoulis IK, Papakostas JC, Matsagas MI, Malamou-Mitsi VD, Pappa LS, Drossos GE, et al. Superiority of early relative to late ischemic preconditioning in spinal cord protection after descending thoracic aortic occlusion. J Thorac Cardiovasc Surg. 2004;128:724–30.PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Etz CD, Weigang E, Hartert M, Lonn L, Mestres CA, Di Bartolomeo R, et al. Contemporary spinal cord protection during thoracic and thoracoabdominal aortic surgery and endovascular aortic repair: a position paper of the vascular domain of the European Association for Cardio-Thoracic Surgery†. Eur J Cardiothorac Surg. 2015;47:943–57.PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Heberden W A letter to Dr. Heberden concerning the angina pectoris: and an account of the dissection of the one who had been troubled by that disorder. Read at the college, Nov.17, 1772. Medical Transactions published by the College of Physicians in London 1785;3:1–11.Google Scholar
  263. 263.
    MacAlpin RN, Kattus AA. Adaptation to exercise in angina pectoris. The electrocardiogram during treadmill walking and coronary angiographic findings. Circulation. 1966;33:183–201.PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Tomai F. Warm up phenomenon and preconditioning in clinical practice. Heart. 2002;87:99–100.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Kelion AD, Webb TP, Gardner MA, Ormerod OJ, Banning AP. The warm-up effect protects against ischemic left ventricular dysfunction in patients with angina. J Am Coll Cardiol. 2001;37:705–10.PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Williams DO, Bass TA, Gewirtz H, Most AS. Adaptation to the stress of tachycardia in patients with coronary artery disease: insight into the mechanism of the warm-up phenomenon. Circulation. 1985;71:687–92.PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Okazaki Y, Kodama K, Sato H, Kitakaze M, Hirayama A, Mishima M, et al. Attenuation of increased regional myocardial oxygen consumption during exercise as a major cause of warm-up phenomenon. J Am Coll Cardiol. 1993;21:1597–604.PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Tomai F, Crea F, Danesi A, Perino M, Gaspardone A, Ghini AS, et al. Mechanisms of the warm-up phenomenon. Eur Heart J. 1996;17:1022–7.PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Maybaum S, Ilan M, Mogilevsky J, Tzivoni D. Improvement in ischemic parameters during repeated exercise testing: a possible model for myocardial preconditioning. Am J Cardiol. 1996;78:1087–91.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Koutelou M, Katsikis A, Theodorakos A, Tsapaki V, Kouzoumi A, Dritsas A, et al. Stress test with dual isotope studies for the documentation of classical ischemic preconditioning. Atherosclerosis. 2010;210:445–51.PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Iliodromitis EK, Koutelou M, Paraskevaidis IA, Theodorakos A, Farmakis D, Tsoutsanis J, et al. Treadmill exercise test with dual isotope scintigraphy documents the second window of preconditioning in humans. Atherosclerosis. 2008;198:122–8.PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Lalonde F, Poirier P, Sylvestre MP, Arvisais D, Curnier D. Exercise-induced ischemic preconditioning detected by sequential exercise stress tests: a meta-analysis. Eur J Prev Cardiol. 2015;22:100–12.PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Ottani F, Galvani M, Ferrini D, Sorbello F, Limonetti P, Pantoli D, et al. Prodromal angina limits infarct size. A role for ischemic preconditioning. Circulation. 1995;91:291–7.PubMedCrossRefPubMedCentralGoogle Scholar
  274. 274.
    Nakagawa Y, Ito H, Kitakaze M, Kusuoka H, Hori M, Kuzuya T, et al. Effect of angina pectoris on myocardial protection in patients with reperfused anterior wall myocardial infarction: retrospective clinical evidence of "preconditioning". J Am Coll Cardiol. 1995;25:1076–83.PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Kloner RA, Shook T, Antman EM, Cannon CP, Przyklenk K, McCabe CH, et al. TIMI 9 investigators [abst]. Circulation. 1996;94:I–611.Google Scholar
  276. 276.
    Muller DW, Topol EJ, Califf RM, Sigmon KN, Gorman L, George BS, et al. Relationship between antecedent angina pectoris and short-term prognosis after thrombolytic therapy for acute myocardial infarction. Thrombolysis and angioplasty in myocardial infarction (TAMI) study group. Am Heart J. 1990;119:224–31.PubMedCrossRefPubMedCentralGoogle Scholar
  277. 277.
    Kloner RA, Shook T, Przyklenk K, Davis VG, Junio L, Matthews RVM, et al. Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning? Circulation. 1995;91:37–45.PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Ruocco NA Jr, Bergelson BA, Jacobs AK, Frederick MM, Faxon DP, Ryan TJ. Invasive versus conservative strategy after thrombolytic therapy for acute myocardial infarction in patients with antecedent angina. A report from thrombolysis in myocardial infarction phase II (TIMI II). J Am Coll Cardiol. 1992;20:1445–51.PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Barbash G, White HD, Modan M, Van de Werf F. Antecedent angina pectoris predicts worse outcome after myocardial infarction in patients receiving thrombolytic therapy: experience gleaned from the international tissue plasminogen activator/streptokinase mortality trial. J Am Coll Cardiol. 1992;20:36–41.PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Migrino RQ, Moliterno DJ, Topol EJ. Preinfarction angina. Letter. N Engl J Med. 1996;335:59.PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    Deutsch E, Berger M, Kussmaul WG, Hirshfeld JW Jr, Herrmann HC, Laskey WK. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation. 1990;82:2044–51. PubMedCrossRefGoogle Scholar
  282. 282.
    Cribier A, Korsatz L, Koning R, Rath P, Gamra H, Stix G, et al. Improved myocardial ischemic response and enhanced collateral circulation with long repetitive coronary occlusion during angioplasty: a prospective study. J Am Coll Cardiol. 1992;20:578–86.PubMedCrossRefGoogle Scholar
  283. 283.
    Matsubara T, Minatoguchi S, Matsuo H, Hayakawa K, Segawa T, Matsuno Y, et al. Three minute, but not one minute, ischemia and nicorandil have a preconditioning effect in patients with coronary artery disease. J Am Coll Cardiol. 2000;35:345–51.PubMedCrossRefGoogle Scholar
  284. 284.
    Masci PG, Andreini D, Francone M, Bertella E, De Luca L, Coceani M, et al. Prodromal angina is associated with myocardial salvage in acute ST-segment elevation myocardial infarction. Eur Heart J Cardiovasc Imaging. 2013;14:1041–8.PubMedCrossRefGoogle Scholar
  285. 285.
    Leesar MA, Stoddard M, Ahmed M, Broadbent J, Bolli R. Preconditioning of human myocardium with adenosine during coronary angioplasty. Circulation. 1997;95:2500–7.PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Tomai F, Crea F, Gaspardone A, Versaci F, De Paulis R, Penta De Peppo A, et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation. 1994;90:700–5.PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Klepzig H, Kober G, Matter C, Luus H, Schneider H, Boedeker KH, et al. Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J. 1999;20:439–46.PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Leesar MA, Stoddard MF, Dawn B, Jasti VG, Masden R, Bolli R. Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty. Circulation. 2001;103:2935–41.PubMedCrossRefPubMedCentralGoogle Scholar
  289. 289.
    Leesar MA, Stoddard MF, Manchikalapudi S, Bolli R. Bradykinin-induced preconditioning in patients undergoing coronary angioplasty. J Am Coll Cardiol. 1999;34:639–50.PubMedCrossRefPubMedCentralGoogle Scholar
  290. 290.
    Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. Lancet. 1993;342:276–7.PubMedCrossRefPubMedCentralGoogle Scholar
  291. 291.
    Walsh SR, Tang TY, Kullar P, Jenkins DP, Dutka DP, Gaunt ME. Ischaemic preconditioning during cardiac surgery: systematic review and meta-analysis of perioperative outcomes in randomised clinical trials. Eur J Cardiothorac Surg. 2008;34:985–94.PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Sukkar L, Hong D, Wong MG, Badve SV, Rogers K, Perkovic V, et al. Effects of ischaemic conditioning on major clinical outcomes in people undergoing invasive procedures: systematic review and meta-analysis. BMJ. 2016;355:i5599.PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Pinaud F, Corbeau JJ, Baufreton C, Binuani JP, De Brux JL, Fouquet O, et al. Remote ischemic preconditioning in aortic valve surgery: results of a randomized controlled study. J Cardiol. 2016;67:36–41.PubMedCrossRefPubMedCentralGoogle Scholar
  294. 294.
    Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med. 2015;373:1408–17.PubMedCrossRefPubMedCentralGoogle Scholar
  295. 295.
    Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, et al. A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med. 2015;373:1397–407.PubMedCrossRefPubMedCentralGoogle Scholar
  296. 296.
    Zaugg M, Lucchinetti E. Remote ischemic preconditioning in cardiac surgery--ineffective and risky? N Engl J Med. 2015;373:1470–2.PubMedCrossRefGoogle Scholar
  297. 297.
    Blusztein DI, Brooks MJ, Andrews DT. A systematic review and meta-analysis evaluating ischemic conditioning during percutaneous coronary intervention. Futur Cardiol. 2017;13:579–92.PubMedCrossRefGoogle Scholar
  298. 298.
    Engstrøm T, Kelbæk H, Helqvist S, Høfsten DE, Kløvgaard L, Clemmensen P, et al. Effect of ischemic postconditioning during primary percutaneous coronary intervention for patients with ST-segment elevation myocardial infarction: a randomized clinical trial. JAMA Cardiol. 2017;2:490–7. PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Vander Heide RS, Steenbergen C. Cardioprotection and myocardial reperfusion: pitfalls to clinical application. Circ Res. 2013;113:464–77.PubMedCrossRefGoogle Scholar
  300. 300.
    Heusch G, Rassaf T. Time to give up on cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning. Circ Res. 2016;119:676–95.PubMedCrossRefPubMedCentralGoogle Scholar
  301. 301.
    Lin E, Symons JA. Volatile anaesthetic myocardial protection: a review of the current literature. HSR Proc Intensive Care Cardiovasc Anesth. 2010;2:105–9.PubMedPubMedCentralGoogle Scholar
  302. 302.
    Li F, Yuan Y. Meta-analysis of the cardioprotective effect of sevoflurane versus propofol during cardiac surgery. BMC Anesthesiol. 2015;15:128.PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Yang XL, Wang D, Zhang GY, Guo XL. Comparison of the myocardial protective effect of sevoflurane versus propofol in patients undergoing heart valve replacement surgery with cardiopulmonary bypass. BMC Anesthesiol. 2017;17:37.PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Lucchinetti E, da Silva R, Pasch T, Schaub MC, Zaugg M. Anaesthetic preconditioning but not postconditioning prevents early activation of the deleterious cardiac remodelling programme: evidence of opposing genomic responses in cardioprotection by pre- and postconditioning. Br J Anaesth. 2005;95:140–52.PubMedCrossRefPubMedCentralGoogle Scholar
  305. 305.
    Bautin AE, Galagudza MM, Datsenko SV, Tashkhanov DM, Marichev AO, Bakanov AI, et al. Effects of remote ischemic preconditioning on perioperative period in elective aortic valve replacement. Anesteziol Reanimatol. 2014:11–7.Google Scholar
  306. 306.
    Zhou C, Liu Y, Yao Y, Zhou S, Fang N, Wang W, et al. β-Blockers and volatile anesthetics may attenuate cardioprotection by remote preconditioning in adult cardiac surgery: a meta-analysis of 15 randomized trials. J Cardiothorac Vasc Anesth. 2013;27:305–11.PubMedCrossRefPubMedCentralGoogle Scholar
  307. 307.
    Landymore RW, Bayes AJ, Murphy JT, Fris JH. Preconditioning prevents myocardial stunning after cardiac transplantation. Ann Thorac Surg. 1998;66:1953–7.PubMedCrossRefPubMedCentralGoogle Scholar
  308. 308.
    Cope JT, Mauney MC, Banks D, Binns OA, Moore CL, Rentz JJ, et al. Intravenous phenylephrine preconditioning of cardiac grafts from non-heart-beating donors. Ann Thorac Surg. 1997;63:1664–8.PubMedCrossRefPubMedCentralGoogle Scholar
  309. 309.
    Ovize M, Thibault H, Przyklenk K. Myocardial conditioning: opportunities for clinical translation. Circ Res. 2013;113:439–50.CrossRefGoogle Scholar
  310. 310.
    Salim A, Vassiliu P, Velmahos GC, Sava J, Murray JA, Belzberg H, et al. The role of thyroid hormone administration in potential organ donors. Arch Surg. 2001;136:1377–80.PubMedCrossRefPubMedCentralGoogle Scholar
  311. 311.
    Cooper LB, Milano CA, Williams M, Swafford W, Croezen D, Van Bakel AB, et al. Thyroid hormone use during cardiac transplant organ procurement. Clin Transpl. 2016;30:1578–83.CrossRefGoogle Scholar
  312. 312.
    Bartos JA, Debaty G, Matsuura T, Yannopoulos D. Post-conditioning to improve cardiopulmonary resuscitation. Curr Opin Crit Care. 2014;20:242–9.PubMedCrossRefPubMedCentralGoogle Scholar
  313. 313.
    Kahlert P, Hildebrandt HA, Patsalis PC, Al-Rashid F, Jánosi RA, Nensa F, et al. No protection of heart, kidneys and brain by remote ischemic preconditioning before transfemoral transcatheter aortic valve implantation: interim-analysis of a randomized single-blinded, placebo-controlled, single-center trial. Int J Cardiol. 2017;231:248–54.PubMedCrossRefPubMedCentralGoogle Scholar
  314. 314.
    Yamaguchi T, Izumi Y, Nakamura Y, Yamazaki T, Shiota M, Sano S, et al. Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. Int J Cardiol. 2015;178:239–46.PubMedCrossRefPubMedCentralGoogle Scholar
  315. 315.
    Hausenloy DJ, Erik Bøtker H, Condorelli G, Ferdinandy P, Garcia-Dorado D, Heusch G, et al. Translating cardioprotection for patient benefit: position paper from the working Group of Cellular Biology of the heart of the European Society of Cardiology. Cardiovasc Res. 2013;98:7–27.PubMedPubMedCentralCrossRefGoogle Scholar
  316. 316.
    Hausenloy DJ, Garcia-Dorado D, Bøtker HE, Davidson SM, Downey J, Engel FB, et al. Novel targets and future strategies for acute cardioprotection: position paper of the European Society of Cardiology Working Group on cellular biology of the heart. Cardiovasc Res. 2017;113:564–85.PubMedPubMedCentralCrossRefGoogle Scholar
  317. 317.
    Heusch G. Cardioprotection: changes and challenges of its translation to the clinic. Lancet. 2013;381:166–75.PubMedCrossRefPubMedCentralGoogle Scholar
  318. 318.
    Depré C, Vatner SF. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev. 2007;12:307–17.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heart and Vessel DepartmentBiomedical Research Foundation, Academy of Athens - Gregory SkalkeasAthensGreece

Personalised recommendations