Abstract
The fetal phenotype is an adaptation of the heart to stress (heart failure, hypertrophy, remodelling, hibernation diabetes mellitus). The fetal heart represents a “protected” state; thus cell death can be avoided when adverse condition for cardiac intergity occur.
It is characterized by an increase in glycogen and βΜHC, together with ANP expression, and decrease of αMHC. A tissue hypothyroid state is said to occur.
However, is less efficient in contractility. It may represent a dedifferentiated state which may predispose to cardiomyocyte regeneration. Interestingly, atrophy is also associated with fetal phenotype.
Keywords
Heart failure Remodeling Diabetes mellitus Glycogen Myosin heavy chain FibrosisReferences
- 1.Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci. 2010;1188:191–8.CrossRefGoogle Scholar
- 2.Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79:215–62.CrossRefGoogle Scholar
- 3.Bartelds B, Knoester H, Smid GB, Takens J, Visser GH, Penninga L, et al. Perinatal changes in myocardial metabolism in lambs. Circulation. 2000;102:926–31.CrossRefGoogle Scholar
- 4.Navaratnam V. Heart muscle: Vetrastructural studies Cambridge. New York: University Press; 1987. referred in 1.Google Scholar
- 5.Pederson BA, Chen H, Schroeder JM, Shou W, DePaoli-Roach AA, Roach PJ. Abnormal cardiac development in the absence of heart glycogen. Mol Cell Biol. 2004;24:7179–87.CrossRefGoogle Scholar
- 6.Van der Vusse GJ, Reneman RS. Glycogen and lipids endogeneous substances. In: Drake-Holland A-J, MIM N, editors. Cardiac metabolism. New York: Willey; 1983. p. 215–37.Google Scholar
- 7.Barbosa V, Sievers RE, Zaugg CE, Wolfe CL. Preconditioning ischemia time determines the degree of glycogen depletion and infarct size reduction in rat hearts. Am Heart J. 1996;131:224–30.CrossRefGoogle Scholar
- 8.Girard J, Ferré P, Pégorier JP, Duée PH. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev. 1992;72:507–62.CrossRefGoogle Scholar
- 9.Goodwin CW, Mela L, Deutsch C, Forster RE, Miller LD, Kelivoria-Papadopoulos M. Development and adaptation of heart mitochondrial respiratory chain function in fetus and in newborn. Adv Exp Med Biol. 1976;75:713–9.CrossRefGoogle Scholar
- 10.Weitzel JM, Iwen KA, Seitz HJ. Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol. 2003;88:121–8.CrossRefGoogle Scholar
- 11.Scholz TD, Koppenhafer SL. tenEyck CJ, Schutte BC. Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria. Am J Phys. 1998;274:C780–8.CrossRefGoogle Scholar
- 12.Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev. 2007;12:331–43.CrossRefGoogle Scholar
- 13.Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci. 2004;1015:202–13.CrossRefGoogle Scholar
- 14.Morkin E. Regulation of myosin heavy chain genes in the heart. Circulation. 1993;87:1451–60.CrossRefGoogle Scholar
- 15.Krenz M, Robbins J. Impact of beta-myosin heavy chain expression on cardiac function during stress. J Am Coll Cardiol. 2004;44:2390–7.CrossRefGoogle Scholar
- 16.Danzi S, Klein S, Klein I. Differential regulation of the myosin heavy chain genes alpha and beta in rat atria and ventricles: role of antisense RNA. Thyroid. 2008;18:761–8.CrossRefGoogle Scholar
- 17.Fuller GA, Bicer S, Hamlin RL, Yamaguchi M, Reiser PJ. Increased myosin heavy chain-beta with atrial expression of ventricular light chain-2 in canine cardiomyopathy. J Card Fail. 2007;13:680–6.CrossRefGoogle Scholar
- 18.Narolska NA, van Loon RB, Boontje NM, Zaremba R, Penas SE, Russell J, et al. Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc Res. 2005;65:221–9.CrossRefGoogle Scholar
- 19.Gustafson TA, Bahl JJ, Markham BE, Roeske WR, Morkin E. Hormonal regulation of myosin heavy chain and alpha-actin gene expression in cultured fetal rat heart myocytes. J Biol Chem. 1987;262:13316–22.PubMedGoogle Scholar
- 20.Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation. 2001;104:2923–31.CrossRefGoogle Scholar
- 21.Reiser PJ, Portman MA, Ning XH, Schomisch MC. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol. 2001;280:H1814–20.CrossRefGoogle Scholar
- 22.Morkin E. Control of cardiac myosin heavy chain gene expression. Microsc Res Tech. 2000;50:522–31.CrossRefGoogle Scholar
- 23.Schwartz K, Boheler KR, de la Bastie D, Lompre AM, Mercadier JJ. Switches in cardiac muscle gene expression as a result of pressure and volume overload. Am J Phys. 1992;262:R364–9.CrossRefGoogle Scholar
- 24.Lahmers S, Wu Y, Call DR, Labeit S, Granzier H. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res. 2004;94:505–13.CrossRefGoogle Scholar
- 25.Cameron VA, Ellmers LJ. Natriuretic peptides during development of the fetal heart and circulation. Endocrinology. 2003;144:2191–4.CrossRefGoogle Scholar
- 26.Kangawa K, Matsuo H. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun. 1984;118:131–9.CrossRefGoogle Scholar
- 27.Ruskoaho H. Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol Rev. 1992;44:479–602.PubMedGoogle Scholar
- 28.Takahashi T, Allen PD, Izumo S. Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Correlation with expression of the ca(2+)-ATPase gene. Circ Res. 1992;71:9–17.CrossRefGoogle Scholar
- 29.Gardner DG, Hedges BK, Wu J, LaPointe MC, Deschepper CF. Expression of the atrial natriuretic peptide gene in human fetal heart. J Clin Endocrinol Metab. 1989;69:729–37.CrossRefGoogle Scholar
- 30.Hersey RM, Nazir MA, Whitney KD, Klein RM, Sale RD, Hinton DA, et al. Atrial natriuretic peptide in heart and specific binding in organs from fetal and newborn rats. Cell Biochem Funct. 1989;7:35–41.CrossRefGoogle Scholar
- 31.Cameron VA, Aitken GD, Ellmers LJ, Kennedy MA, Espiner EA. The sites of gene expression of atrial, brain, and C-type natriuretic peptides in mouse fetal development: temporal changes in embryos and placenta. Endocrinology. 1996;137:817–24.CrossRefGoogle Scholar
- 32.Scott JN, Jennes L. Distribution of atrial natriuretic factor in fetal rat atria and ventricles. Cell Tissue Res. 1987;248:479–81.CrossRefGoogle Scholar
- 33.Day ML, Schwartz D, Wiegand RC, Stockman PT, Brunnert SR, Tolunay HE, et al. Ventricular atriopeptin. Unmasking of messenger RNA and peptide synthesis by hypertrophy or dexamethasone. Hypertension. 1987;9:485–91.CrossRefGoogle Scholar
- 34.Cameron VA, Rademaker MT, Ellmers LJ, Espiner EA, Nicholls MG, Richards AM. Atrial (ANP) and brain natriuretic peptide (BNP) expression after myocardial infarction in sheep: ANP is synthesized by fibroblasts infiltrating the infarct. Endocrinology. 2000;141:4690–7.CrossRefGoogle Scholar
- 35.Luchner A, Stevens TL, Borgeson DD, Redfield M, Wei CM, Porter JG, et al. Differential atrial and ventricular expression of myocardial BNP during evolution of heart failure. Am J Phys. 1998;274:H1684–9.Google Scholar
- 36.Abell TJ, Richards AM, Ikram H, Espiner EA, Yandle T. Atrial natriuretic factor inhibits proliferation of vascular smooth muscle cells stimulated by platelet-derived growth factor. Biochem Biophys Res Commun. 1989;160:1392–6.CrossRefGoogle Scholar
- 37.Horio T, Nishikimi T, Yoshihara F, Matsuo H, Takishita S, Kangawa K. Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. Hypertension. 2000;35:19–24.CrossRefGoogle Scholar
- 38.Wu CF, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem. 1997;272:14860–6.CrossRefGoogle Scholar
- 39.Kuhn M, Holtwick R, Baba HA, Perriard JC, Schmitz W, Ehler E. Progressive cardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A) deficient mice. Heart. 2002;87:368–74.CrossRefGoogle Scholar
- 40.Cox EJ, Marsh SA. A systematic review of fetal genes as biomarkers of cardiac hypertrophy in rodent models of diabetes. PLoS One. 2014;9:e92903.CrossRefGoogle Scholar
- 41.Periasamy M, Bhupathy P, Babu GJ. Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res. 2008;77:265–73.CrossRefGoogle Scholar
- 42.Rivera-Feliciano J, Lee KH, Kong SW, Rajagopal S, Ma Q, Springer Z, et al. Development of heart valves requires Gata4 expression in endothelial-derived cells. Development. 2006;133:3607–18.CrossRefGoogle Scholar
- 43.Molkentin JD, Kalvakolanu DV, Markham BE. Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol. 1994;14:4947–57.CrossRefGoogle Scholar
- 44.Maitra M, Schluterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D, et al. Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol. 2009;326:368–77.CrossRefGoogle Scholar
- 45.Hasegawa K, Lee SJ, Jobe SM, Markham BE, Kitsis RN. Cis-acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation. 1997;96:3943–53.CrossRefGoogle Scholar
- 46.Lien CL, Wu C, Mercer B, Webb R, Richardson JA, Olson EN. Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development. 1999;126:75–84.PubMedGoogle Scholar
- 47.Azakie A, Fineman JR, He Y. Myocardial transcription factors are modulated during pathologic cardiac hypertrophy in vivo. J Thorac Cardiovasc Surg. 2006;132:1262–71.CrossRefGoogle Scholar
- 48.Thattaliyath BD, Firulli BA, Firulli AB. The basic-helix-loop-helix transcription factor HAND2 directly regulates transcription of the atrial naturetic peptide gene. J Mol Cell Cardiol. 2002;34:1335–44.CrossRefGoogle Scholar
- 49.Kolwicz SC Jr, Tian R. Glucose metabolism and cardiac hypertrophy. Cardiovasc Res. 2011;90:194–201.CrossRefGoogle Scholar
- 50.Chess DJ, Stanley WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res. 2008;79:269–78.CrossRefGoogle Scholar
- 51.Depre C, Young ME, Ying J, Ahuja HS, Han Q, Garza N, et al. Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J Mol Cell Cardiol. 2000;32:985–96.CrossRefGoogle Scholar
- 52.Dawes GS, Mott JC, Shelley HJ. The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia. J Physiol. 1959;146:516–38.CrossRefGoogle Scholar
- 53.Depré C, Vanoverschelde JL, Melin JA, Borgers M, Bol A, Ausma J, et al. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Phys. 1995;268:H1265–75.Google Scholar
- 54.Taegtmeyer H. Glycogen in the heart--an expanded view. J Mol Cell Cardiol. 2004;37:7–10.CrossRefGoogle Scholar
- 55.Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, et al. Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res. 2003;92:1233–9.CrossRefGoogle Scholar
- 56.Kinugawa K, Minobe WA, Wood WM, Ridgway EC, Baxter JD, Ribeiro RC, et al. Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation. 2001;103:1089–94.CrossRefGoogle Scholar
- 57.Pantos C, Mourouzis I, Saranteas T, Paizis I, Xinaris C, Malliopoulou V, et al. Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion. Basic Res Cardiol. 2005;100:422–32.CrossRefGoogle Scholar
- 58.Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem. 2002;277:22896–901.CrossRefGoogle Scholar
- 59.Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N, et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15:1406–18.CrossRefGoogle Scholar
- 60.Majewski N, Nogueira V, Robey RB, Hay N. Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol. 2004;24:730–40.CrossRefGoogle Scholar
- 61.Baker JE, Holman P, Gross GJ. Preconditioning in immature rabbit hearts: role of KATP channels. Circulation. 1999;99:1249–54.CrossRefGoogle Scholar
- 62.Baker EJ, Boerboom LE, Olinger GN, Baker JE. Tolerance of the developing heart to ischemia: impact of hypoxemia from birth. Am J Phys. 1995;268:H1165–73.Google Scholar
- 63.Awad WI, Shattock MJ, Chambers DJ. Ischemic preconditioning in immature myocardium. Circulation. 1998;98:II206–13.PubMedGoogle Scholar
- 64.Mourouzis I, Dimopoulos A, Saranteas T, Tsinarakis N, Livadarou E, Spanou D, et al. Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart. Physiol Res. 2009;58:29–38.PubMedGoogle Scholar
- 65.Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta. 1832;2013:2414–24.Google Scholar
- 66.Liang Q, De Windt LJ, Witt SA, Kimball TR, Markham BE, Molkentin JD. The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J Biol Chem. 2001;276:30245–302453.CrossRefGoogle Scholar
- 67.Sepulveda JL, Vlahopoulos S, Iyer D, Belaguli N, Schwartz RJ. Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. J Biol Chem. 2002;277:25775–257782.CrossRefGoogle Scholar
- 68.Gusterson RJ, Jazrawi E, Adcock IM, Latchman DS. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem. 2003;278:6838–47.CrossRefGoogle Scholar
- 69.Kee HJ, Bae EH, Park S, Lee KE, Suh SH, Kim SW, et al. HDAC inhibition suppresses cardiac hypertrophy and fibrosis in DOCA-salt hypertensive rats via regulation of HDAC6/HDAC8 enzyme activity. Kidney Blood Press Res. 2013;37:229–39.CrossRefGoogle Scholar
- 70.Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17–31.CrossRefGoogle Scholar
- 71.Eom GH, Cho YK, Ko JH, Shin S, Choe N, Kim Y, et al. Casein kinase-2α1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation. 2011;123:2392–403.CrossRefGoogle Scholar
- 72.Lee TM, Lin MS, Chang NC. Inhibition of histone deacetylase on ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol. 2007;293:H968–77.CrossRefGoogle Scholar
- 73.Kee HJ, Kook H. Krüppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J Mol Cell Cardiol. 2009;47:770–80.CrossRefGoogle Scholar
- 74.Ma P, Pan H, Montgomery RL, Olson EN, Schultz RM. Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during myocyte development. Proc Natl Acad Sci U S A. 2012;109:E481–9.Google Scholar
- 75.Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 2007;100:416–24.CrossRefGoogle Scholar
- 76.Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613–8.CrossRefGoogle Scholar
- 77.Dispersyn GD, Geuens E, Ver Donck L, Ramaekers FC, Borgers M. Adult rabbit cardiomyocytes undergo hibernation-like dedifferentiation when co-cultured with cardiac fibroblasts. Cardiovasc Res. 2001;51:230–40.CrossRefGoogle Scholar
- 78.Szibor M, Pöling J, Warnecke H, Kubin T, Braun T. Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration. Cell Mol Life Sci. 2014;71:1907–16.CrossRefGoogle Scholar
- 79.Jopling C, Sleep E, Raya M, Martí M, Raya A, Izpisúa Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464:606–9.CrossRefGoogle Scholar
- 80.Taegtmeyer H. From fetal to fatal. In: Cokkinos DV, Pantos C, Heusch G, Taegtmeyer H, editors. Myocardial ischemia. New York: Springer; 2006. p. 1–9.Google Scholar
- 81.Razeghi P, Taegtmeyer H. Cardiac remodeling: UPS lost in transit. New York. Circ Res. 2005;97:964–6.Google Scholar
- 82.Baskin KK, Taegtmeyer H. Taking pressure off the heart: the ins and outs of atrophic remodelling. Cardiovasc Res. 2011;90:243–50.CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019