Myocardial Hibernation

  • Dennis V. CokkinosEmail author


Myocardial hibernation signifies the existence of dysfunctional myocardium in vascular territories subtended by a stenotic coronary artery. No appreciable cardiomyocite loss is found. Resting or hyperemic flow is reduced. Its contractility can be improved after revascularization. Many non-invasive techniques (stress echocardiography, SPECT, PET, CMR) are being employed to a test the existence of HIB. It is generally believed that if more than 25% of left ventricular myocardium is found viable, revascularization is advisable.

However, the results of the STICH trial have shed some doubt which is still being debated.


Hibernation Myocardial viability Revascularization Cardiac remodeling Conditioning Myocardial flow 


  1. 1.
    Diamond GA, Forrester JS, deLuz PL, Wyatt HL, Swan HJ. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J. 1978;95:204–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117:211–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Heusch G, Schulz R, Rahimtoola SH. Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol. 2005;288:H984–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Heusch G. Hibernating myocardium. Physiol Rev. 1998;78:1055–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Yan L, Kudej RK, Vatner DE, Vatner SF. Myocardial ischemic protection in natural mammalian hibernation. Basic Res Cardiol. 2015;110:9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev. 2003;83:1153–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Murphy E. Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res. 2004;94:7–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599–609.PubMedCrossRefGoogle Scholar
  9. 9.
    Freeland K, Boxer LM, Latchman DS. The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res Mol Brain Res. 2001;92:98–106.PubMedCrossRefGoogle Scholar
  10. 10.
    Laske TG, Iaizzo PA, Garshelis DL. Six Years in the Life of a Mother Bear - The Longest Continuous Heart Rate Recordings from a Free-Ranging Mammal. Sci Rep. 2017;7:40732.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”. J Am Coll Cardiol. 1986;8:1467–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Heusch G, Schulz R. Characterization of hibernating and stunned myocardium. Eur Heart J. 1997;18(Suppl D):D102–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Ross J Jr. Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation. 1991;83:1076–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Goldstein RA, Kirkeeide RL, Demer LL, Merhige M, Nishikawa A, Smalling RW, et al. Relation between geometric dimensions of coronary artery stenoses and myocardial perfusion reserve in man. J Clin Invest. 1987;79:1473–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330:1782–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Voudris V, Manginas A, Vassilikos V, Koutelou M, Kantzis J, Cokkinos DV. Coronary flow velocity changes after intravenous dipyridamole infusion: measurements using intravascular Doppler guide wire. A documentation of flow inhomogeneity. J Am Coll Cardiol. 1996;27:1148–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Camici PG, Rimoldi OE. Myocardial blood flow in patients with hibernating myocardium. Cardiovasc Res. 2003;57:302–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Gallagher KP, Matsuzaki M, Osakada G, Kemper WS, Ross J Jr. Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res. 1983;52:716–29.PubMedCrossRefGoogle Scholar
  19. 19.
    Schulz R, Heusch G. Hibernating myocardium. Heart. 2000;84:587–94.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kloner RA, Bolli R, Marban E, Reinlib L, Braunwald E. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop. Circulation. 1998;97:1848–67.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ferrari R. Pathophysiological vs biochemical ischaemia: a key to transition from reversible to irreversible damage. Eur Heart J Suppl. 2001;3(Suppl C):C2–C10.CrossRefGoogle Scholar
  22. 22.
    Flameng W, Vanhaecke J, Van Belle H, Borgers M, De Beer L, Minten J. Relation between coronary artery stenosis and myocardial purine metabolism, histology and regional function in humans. J Am Coll Cardiol. 1987;9:1235–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS. Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation. 1988;78:729–35.PubMedCrossRefGoogle Scholar
  24. 24.
    Fallavollita JA, Malm BJ, Canty JM Jr. Hibernating myocardium retains metabolic and contractile reserve despite regional reductions in flow, function, and oxygen consumption at rest. Circ Res. 2003;92:48–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Fallavollita JA, Logue M, Canty JM Jr. Stability of hibernating myocardium in pigs with a chronic left anterior descending coronary artery stenosis: absence of progressive fibrosis in the setting of stable reductions in flow, function and coronary flow reserve. J Am Coll Cardiol. 2001;37:1989–95.PubMedCrossRefGoogle Scholar
  26. 26.
    Fallavollita JA, Perry BJ, Canty JM Jr. 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium. Evidence for transmural variations in chronic hibernating myocardium. Circulation. 1997;95:1900–9.PubMedCrossRefGoogle Scholar
  27. 27.
    McFalls EO, Baldwin D, Palmer B, Marx D, Jaimes D, Ward HB. Regional glucose uptake within hypoperfused swine myocardium as measured by positron emission tomography. Am J Phys. 1997;272:H343–9.Google Scholar
  28. 28.
    Gerber BL, Ordoubadi FF, Wijns W, Vanoverschelde JL, Knuuti MJ, Janier M, et al. Positron emission tomography using(18)F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: optimal criteria for the prediction of recovery of post-ischaemic left ventricular dysfunction. Results from the European Community Concerted Action Multicenter study on use of(18)F-fluoro-deoxyglucose Positron Emission Tomography for the Detection of Myocardial Viability. Eur Heart J. 2001;22:1691–701.PubMedCrossRefGoogle Scholar
  29. 29.
    Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, von Schulthess GK, et al. Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation. 2003;108:1095–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Vanoverschelde JL, Depré C, Gerber BL, Borgers M, Wijns W, Robert A, et al. Time course of functional recovery after coronary artery bypass graft surgery in patients with chronic left ventricular ischemic dysfunction. Am J Cardiol. 2000;85:1432–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39:1151–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Wiggers H, Noreng M, Paulsen PK, Bøttcher M, Egeblad H, Nielsen TT, et al. Energy stores and metabolites in chronic reversibly and irreversibly dysfunctional myocardium in humans. J Am Coll Cardiol. 2001;37:100–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Vogt AM, Elsässer A, Nef H, Bode C, Kübler W, Schaper J. Increased glycolysis as protective adaptation of energy depleted, degenerating human hibernating myocardium. Mol Cell Biochem. 2003;242:101–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Vanoverschelde JL, Wijns W, Depré C, Essamri B, Heyndrickx GR, Borgers M, et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993;87:1513–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Hata T, Nohara R, Fujita M, Hosokawa R, Lee L, Kudo T, et al. Noninvasive assessment of myocardial viability by positron emission tomography with 11C acetate in patients with old myocardial infarction. Usefulness of low-dose dobutamine infusion. Circulation. 1996;94:1834–341.PubMedCrossRefGoogle Scholar
  36. 36.
    Depré C, Tomlinson JE, Kudej RK, Gaussin V, Thompson E, Kim SJ, et al. Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc Natl Acad Sci U S A. 2001;98:9336–41.CrossRefGoogle Scholar
  37. 37.
    Ng DW, Sathish S, Khan A, Chandrasoma P, Wijns W, Chandraratna PA. Identification of hibernating myocardium by acoustic microscopy. Ultrasound Med Biol. 2004;30:693–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Gunning MG, Kaprielian RR, Pepper J, Pennell DJ, Sheppard MN, Severs NJ, et al. The histology of viable and hibernating myocardium in relation to imaging characteristics. J Am Coll Cardiol. 2002;39:428–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Borgers M. Hibernating myocardium: Programmed cell survival or programmed cell death? Exp Clin Cardiol. 2002;7:69–72.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ausma J, Thoné F, Dispersyn GD, Flameng W, Vanoverschelde JL, Ramaekers FC, et al. Dedifferentiated cardiomyocytes from chronic hibernating myocardium are ischemia-tolerant. Mol Cell Biochem. 1998;186:159–68.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, et al. Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res. 2003;92:1233–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dispersyn GD, Ausma J, Thoné F, Flameng W, Vanoverschelde JL, Allessie MA, et al. Cardiomyocyte remodelling during myocardial hibernation and atrial fibrillation: prelude to apoptosis. Cardiovasc Res. 1999;43:947–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Thijssen V, Borgers M, Lenders MH, Ramaekers FC, Suzuki G, Palka B, et al. Temporal and spatial variations in structural protein expression during the progression from stunned to hibernating myocardium. Circulation. 2004;110:3313–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Timolati F, Anliker T, Groppalli V, Perriard JC, Eppenberger HM, Suter TM, et al. The role of cell death and myofibrillar damage in contractile dysfunction of long-term cultured adult cardiomyocytes exposed to doxorubicin. Cytotechnology. 2009;61:25–36.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chen C, Ma L, Dyckman W, Santos F, Lai T, Gillam LD, et al. Left ventricular remodeling in myocardial hibernation. Circulation. 1997;96(9 Suppl):II-46–50.Google Scholar
  46. 46.
    Chen C, Ma L, Linfert DR, Lai T, Fallon JT, Gillam LD, et al. Myocardial cell death and apoptosis in hibernating myocardium. J Am Coll Cardiol. 1997;30:1407–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Mills I, Fallon JT, Wrenn D, Sasken H, Gray W, Bier J, et al. Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure and flow. Am J Phys. 1994;266:H447–57.Google Scholar
  48. 48.
    Lim H, Fallavollita JA, Hard R, Kerr CW, Canty JM Jr. Profound apoptosis-mediated regional myocyte loss and compensatory hypertrophy in pigs with hibernating myocardium. Circulation. 1999;100:2380–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Heusch G. What are underlying mechanisms of myocardial hibernation? Dialogues Cardiovasc Med. 1997;2:79–83.Google Scholar
  50. 50.
    Depré C, Kim SJ, John AS, Huang Y, Rimoldi OE, Pepper JR, et al. Program of cell survival underlying human and experimental hibernating myocardium. Circ Res. 2004;95:433–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Baker CS, Dutka DP, Pagano D, Rimoldi O, Pitt M, Hall RJ, et al. Immunocytochemical evidence for inducible nitric oxide synthase and cyclooxygenase-2 expression with nitrotyrosine formation in human hibernating myocardium. Basic Res Cardiol. 2002;97:409–15.PubMedCrossRefGoogle Scholar
  52. 52.
    Depre C, Vatner SF. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev. 2007;12:307–17.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Dewald O, Frangogiannis NG, Zoerlein M, Duerr GD, Klemm C, Knuefermann P, et al. Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species. Proc Natl Acad Sci U S A. 2003;100:2700–5.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Frangogiannis NG, Shimoni S, Chang SM, Ren G, Shan K, Aggeli C, et al. Evidence for an active inflammatory process in the hibernating human myocardium. Am J Pathol. 2002;160:1425–33.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kalra DK, Zhu X, Ramchandani MK, Lawrie G, Reardon MJ, Lee-Jackson D, et al. Increased myocardial gene expression of tumor necrosis factor-alpha and nitric oxide synthase-2: a potential mechanism for depressed myocardial function in hibernating myocardium in humans. Circulation. 2002;105:1537–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Thielmann M, Dörge H, Martin C, Belosjorow S, Schwanke U, van De Sand A, et al. Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res. 2002;90:807–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Prendergast BJ, Freeman DA, Zucker I, Nelson RJ. Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1054–62.PubMedCrossRefGoogle Scholar
  58. 58.
    Novoselova EG, Kolaeva SG, Makar VR, Agaphonova TA. Production of tumor necrosis factor in cells of hibernating ground squirrels Citellus undulatus during annual cycle. Life Sci. 2000;67:1073–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Luisi AJ Jr, Fallavollita JA, Suzuki G, Canty JM Jr. Spatial inhomogeneity of sympathetic nerve function in hibernating myocardium. Circulation. 2002;106:779–81.PubMedCrossRefGoogle Scholar
  60. 60.
    Shan K, Bick RJ, Poindexter BJ, Nagueh SF, Shimoni S, Verani MS, et al. Altered adrenergic receptor density in myocardial hibernation in humans: A possible mechanism of depressed myocardial function. Circulation. 2000;102:2599–606.PubMedCrossRefGoogle Scholar
  61. 61.
    Canty JM Jr, Suzuki G, Banas MD, Verheyen F, Borgers M, Fallavollita JA. Hibernating myocardium: chronically adapted to ischemia but vulnerable to sudden death. Circ Res. 2004;94:1142–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Bito V, Heinzel FR, Weidemann F, Dommke C, van der Velden J, Verbeken E, et al. Cellular mechanisms of contractile dysfunction in hibernating myocardium. Circ Res. 2004;94:794–801.PubMedCrossRefGoogle Scholar
  63. 63.
    Fallavollita JA, Jacob S, Young RF, Canty JM Jr. Regional alterations in SR Ca(2+)-ATPase, phospholamban, and HSP-70 expression in chronic hibernating myocardium. Am J Phys. 1999;277:H1418–28.Google Scholar
  64. 64.
    Lüss H, Schäfers M, Neumann J, Hammel D, Vahlhaus C, Baba HA, et al. Biochemical mechanisms of hibernation and stunning in the human heart. Cardiovasc Res. 2002;56:411–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008;117:103–14.PubMedCrossRefGoogle Scholar
  66. 66.
    Gewirtz H, Dilsizian V. Myocardial Viability: Survival Mechanisms and Molecular Imaging Targets in Acute and Chronic Ischemia. Circ Res. 2017;120:1197–212.PubMedCrossRefGoogle Scholar
  67. 67.
    Hayat SA, Senior R. Contrast echocardiography for the assessment of myocardial viability. Curr Opin Cardiol. 2006;21:473–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Ragosta M, Camarano G, Kaul S, Powers ER, Sarembock IJ, Gimple LW. Microvascular integrity indicates myocellular viability in patients with recent myocardial infarction. New insights using myocardial contrast echocardiography. Circulation. 1994;89:2562–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Hoffmann R, Altiok E, Nowak B, Heussen N, Kühl H, Kaiser HJ, et al. Strain rate measurement by doppler echocardiography allows improved assessment of myocardial viability inpatients with depressed left ventricular function. J Am Coll Cardiol. 2002;39:443–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Thibault H, Derumeaux G. Assessment of myocardial ischemia and viability using tissue Doppler and deformation imaging: the lessons from the experimental studies. Arch Cardiovasc Dis. 2008;101:61–8.PubMedCrossRefGoogle Scholar
  71. 71.
    McLean DS, Anadiotis AV, Lerakis S. Role of echocardiography in the assessment of myocardial viability. Am J Med Sci. 2009;337:349–54.PubMedCrossRefGoogle Scholar
  72. 72.
    Ling LH, Christian TF, Mulvagh SL, Klarich KW, Hauser MF, Nishimura RA, et al. Determining myocardial viability in chronic ischemic left ventricular dysfunction: a prospective comparison of rest-redistribution thallium 201 single-photon emission computed tomography, nitroglycerin-dobutamine echocardiography, and intracoronary myocardial contrast echocardiography. Am Heart J. 2006;151:882–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Naruse H, Kondo T, Arii T, Morita M, Ohyanagi M, Iwasaki T, et al. Comparative accuracy of various Tl-201 reinjection imaging protocols to detect myocardial viability. Ann Nucl Med. 1996;10:119–26.PubMedCrossRefGoogle Scholar
  74. 74.
    Sciagrà R, Pellegri M, Pupi A, Bolognese L, Bisi G, Carnovale V, et al. Prognostic implications of Tc-99 m sestamibi viability imaging and subsequent therapeutic strategy in patients with chronic coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol. 2000;36:739–45.PubMedCrossRefGoogle Scholar
  75. 75.
    Sciagrà R, Imperiale A, Antoniucci D, Migliorini A, Parodi G, Comis G, et al. Relationship of infarct size and severity versus left ventricular ejection fraction and volumes obtained from 99mTc-sestamibi gated single-photon emission computed tomography in patients treated with primary percutaneous coronary intervention. Eur J Nucl Med Mol Imaging. 2004;31:969–74.PubMedCrossRefGoogle Scholar
  76. 76.
    Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314:884–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Auerbach MA, Schöder H, Hoh C, Gambhir SS, Yaghoubi S, Sayre JW, et al. Prevalence of myocardial viability as detected by positron emission tomography in patients with ischemic cardiomyopathy. Circulation. 1999;99:2921–16.PubMedCrossRefGoogle Scholar
  78. 78.
    Ferrannini E, Santoro D, Bonadonna R, Natali A, Parodi O, Camici PG. Metabolic and hemodynamic effects of insulin on human hearts. Am J Phys. 1993;264:E308–E3015.Google Scholar
  79. 79.
    Bree D, Wollmuth JR, Cupps BP, Krock MD, Howells A, Rogers J, et al. Low-dose dobutamine tissue-tagged magnetic resonance imaging with 3-dimensional strain analysis allows assessment of myocardial viability in patients with ischemic cardiomyopathy. Circulation. 2006;114(1 Suppl):I33–6.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.PubMedCrossRefGoogle Scholar
  81. 81.
    Judd RM, Wagner A, Rehwald WG, Albert T, Kim RJ. Technology insight: assessment of myocardial viability by delayed-enhancement magnetic resonance imaging. Nat Clin Pract Cardiovasc Med. 2005;2:150–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Elfigih I, Henein MY. Non-invasive imaging in detecting myocardial viability: Myocardial function versus perfusion. Int J Cardiol Heart Vasc. 2014;5:51–6.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Bax JJ, Maddahi J, Poldermans D, Elhendy A, Schinkel A, Boersma E, et al. Preoperative comparison of different noninvasive strategies for predicting improvement in left ventricular function after coronary artery bypass grafting. Am J Cardiol. 2003;92:1–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Hanekom L, Jenkins C, Jeffries L, Case C, Mundy J, Hawley C, et al. Incremental value of strain rate analysis as an adjunct to wall-motion scoring for assessment of myocardial viability by dobutamine echocardiography: a follow-up study after revascularization. Circulation. 2005;112:3892–900.PubMedCrossRefGoogle Scholar
  85. 85.
    Bax JJ, Maddahi J, Poldermans D, Elhendy A, Cornel JH, Boersma E, et al. Sequential (201)Tl imaging and dobutamine echocardiography to enhance accuracy of predicting improved left ventricular ejection fraction after revascularization. J Nucl Med. 2002;43:795–802.PubMedGoogle Scholar
  86. 86.
    Underwood SR, Bax JJ, vom Dahl J, Henein MY, Knuuti J, van Rossum AC, et al. Imaging techniques for the assessment of myocardial hibernation. Report of a Study Group of the European Society of Cardiology. Eur Heart J. 2004;25:815–36.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Bax JJ, Visser FC, Poldermans D, Elhendy A, Cornel JH, Boersma E, et al. Time course of functional recovery of stunned and hibernating segments after surgical revascularization. Circulation. 2001;104(12 Suppl 1):I314–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Bourque JM, Hasselblad V, Velazquez EJ, Borges-Neto S, O’connor CM. Revascularization in patients with coronary artery disease, left ventricular dysfunction, and viability: a meta-analysis. Am Heart J. 2003;146:621–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Fath-Ordoubadi F, Beatt KJ, Spyrou N, Camici PG. Efficacy of coronary angioplasty for the treatment of hibernating myocardium. Heart. 1999;82:210–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Desideri A, Cortigiani L, Christen AI, Coscarelli S, Gregori D, Zanco P, et al. The extent of perfusion-F18-fluorodeoxyglucose positron emission tomography mismatch determines mortality in medically treated patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol. 2005;46:1264–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Bax JJ, Schinkel AF, Boersma E, Rizzello V, Elhendy A, Maat A, et al. Early versus delayed revascularization in patients with ischemic cardiomyopathy and substantial viability: impact on outcome. Circulation. 2003;108(Suppl 1):II39–42.PubMedGoogle Scholar
  92. 92.
    Tarakji KG, Brunken R, McCarthy PM, Al-Chekakie MO, Abdel-Latif A, Pothier CE, et al. Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation. 2006;113:230–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Perrone-Filardi P, Pinto FJ. Looking for myocardial viability after a STICH trial: not enough to close the door. J Nucl Med. 2012;53:349–52.PubMedCrossRefGoogle Scholar
  95. 95.
    Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, et al. Guidelines on myocardial revascularization. Eur Heart J. 2010;31:2501–55.PubMedCrossRefGoogle Scholar
  96. 96.
    Shah BN, Khattar RS, Senior R. The hibernating myocardium: current concepts, diagnostic dilemmas, and clinical challenges in the post-STICH era. Eur Heart J. 2013;34:1323–36.PubMedCrossRefGoogle Scholar
  97. 97.
    Cleland JG, Calvert M, Freemantle N, Arrow Y, Ball SG, Bonser RS, et al. The Heart Failure Revascularisation Trial (HEART). Eur J Heart Fail. 2011;13:227–33.PubMedCrossRefGoogle Scholar
  98. 98.
    Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50:2002–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heart and Vessel DepartmentBiomedical Research Foundation, Academy of Athens - Gregory SkalkeasAthensGreece

Personalised recommendations