Active Oxygen Defenses

  • Patrick L. Iversen


Metabolic defenses against environmental chemical exposures are essential. The cytochrome P450 family of mixed function oxidases play a prominent role transforming lipophilic threats into more water-soluble metabolites that are cleared from the body. The promiscuous heme active site also generates radical oxygen and nitrogen species capable of enhancing defense against infection but also may present a liability in tissue damage. The transcriptional regulation of metabolic enzymes is complex and coordinated with immune responses. In this way, the metabolic defenses parallel immune defenses as both can recognize and respond to a very large array of foreign chemicals and organisms. Metabolism provides resilience through transcriptional plasticity and metabolites drive downstream transcriptional changes essential for coordinated resilience.


Reactive oxygen species Cytochrome P450 Genetic disease linkages NADPH cytochrome P450 reductase Transcriptome plasticity Nuclear receptors 


  1. Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P4502C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 2007;35(9):1687–93.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alvarez LAJ, Bourke B, Pircalabioru G, Georgiev AY, Knaus UG, et al. Cj1411c encodes for a cytochrome P450 involved in campylobacter jejuni 81-176 pathogenicity. PLoS One. 2013;8(9):e75534.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amano MT, Camara NOS. The immunomodulatory role of carbon monoxide during transplantation. Med Gas Res. 2013;3:1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anderson GD. Pregnancy-incuded changes inpharmacokinetics: a mechanistic-based approach. Clin Pharmacokinet. 2005;44:989–1008.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Annalora AJ, Marcus CB, Iversen PL. Alternative splicing in the cytochrome P450 superfamily expands protein diversity to augment gene function and redirect human drug metabolism. Drug Metab Dispos. 2017;45(4):375–89.CrossRefGoogle Scholar
  6. Arora V, Iversen PL. Antisense oligonucleotides targeted to the p53 gene modulate rat liver regeneration. Drug Metab Dispos. 2000;28(2):131–8.PubMedPubMedCentralGoogle Scholar
  7. Arora V, Iversen PL, Ebadi M. Manipulation of metallothionein expression in the regenerating rat liver using antisense oligonucleotides. BBRC. 1998;246:711–8.PubMedPubMedCentralGoogle Scholar
  8. Arora V, Knapp DC, Smith BL, Statdfield ML, Stein DA, Reddy MT, Weller DD, Iversen PL. c-Myc antisense limits rat liver regeneration and indicates role for c-myc in regulating cytochrome P-450 3A activity. J Pharmacol Exp Ther. 2000;292:921–8.PubMedPubMedCentralGoogle Scholar
  9. Arora V, Cate M, Ghosh C, Iversen PL. Phosphorodiamidate morpholino oligomers inhibit expression of human cytochrome P450 3A4 and alter selected drug metabolism. Drug Metab Dispos. 2002a;30:757–62.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Arora V, Hannah TL, Iversen PL, Brand RM. Transdermal use of phosphorodiamidate morpholino oligomer AVI-4472 inhibits cytochrome P450 3A2 activity in male rats. Pharm Res. 2002b;19(10):1465–70.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Arora V, Knapp DC, Reddy MT, Weller DD, Iversen PL. Phosphorodiamidate morpholino oligomers demonstrate antisense activity in rat liver following oral administration. J Pharm Sci. 2002c;91(4):1009–101.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Athirakul K, Bradbury JA, Graves JP, DeGraff LM, Ma J, Zhao Y, Couse JF, Quigley R, Harder DR, Zhao X, Imig JD, Pedersen TL, Newman JW, Hammock BD, Conley AJ, Korach KS, Coffman TM, Zeldin DC. Increased blood pressure in mice lacking cytochrome P450 2J5. FASEB J. 2008;22:4096–108.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baird WM, Hooven LA, Mahadevan B, Luch A, Seidel A, Iversen PL. Responses of human cells to PAH-induced DNA damage. Polycycl Aromat Compd. 2002;22(2–3):771–80.CrossRefGoogle Scholar
  14. Barry CE, Lee RE, Mdluki K, Sampson AE, Schroeder BG, Slayden RA, Yan Y. Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res. 1998;37:143–79.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Batra JK, Venkitasubramanian TA, Raj HG. Drug metabolism in experimental tuberculosis: I. Changes in hepatic and pulmonary monooxygenase activities dur to infection. Eur J Drug Metab Pharmacokinet. 1987;12(2):109–14.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Beijer MR, Kraal G, den Haan JMM. Vitamin A and dendritic cell differentiation. Immunology. 2013;142:39–45.CrossRefGoogle Scholar
  17. Chang JC, Harik NS, Liao RP, Sherman DR. Identification of Mycobacterial genes that alter growth and pathology in macrophages and in mice. J Infect Dis. 2007;196(5):788–95.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chung SW, Liu X, Macias AA, Baron RM, Perrella MA. Heme oxygenase 1 derived carbon monoxide enhances the host defense response to microbial sepsis in mice. Trends Mol Med. 2008;19:3–11.Google Scholar
  19. Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–44.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dalton TP, Dieter MZ, Matlib RS, Childs NL, Shertzer HG, Genter MB, Nebert DW. Targeted knockout of Cyp1a1 gene does not Alter hepatic constitutive expression of other genes in the mouse [Ah] battery. Biochem Biophys Res Commun. 2000;267:184–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Davydov R, Dawson JH, Perera R, Hoffman BM. The use of deuterated camphor as a substrate in (1)H ENDOR studies of hydroxylation by cryoreduced oxy P450cam provides new evidence of the involvement of compound I. Biochemistry. 2013;52:667–71.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Desjardins JP, Iversen PL. Inhibition of the rat cytochrome P450 3A2 by an antisense Phosphorothioate Oligodeoxynucleotide in vivo. J Pharmacol Expl Ther. 1995;275(3):1608–13.Google Scholar
  23. Desjardins J, Mata J, Brown T, Zon G, Iversen PL. Cholesteryl-conjugated phosphorothioate oligonucleotides modulate CYP2B1 expression in vivo. J Drug Target. 1995;2:477–85.CrossRefGoogle Scholar
  24. Dragin N, Shi Z, Madan R, Karp CL, Sartor MA, Chen C, Gonzalez FJ, Nebert DW. Phenotype of the Cyp1a1/1a2/1b1(−/−) triple-knockout mouse. Mol Pharmacol. 2008;73:1844–56.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dranse HJ, Sampaio AV, Petkovich M, Underhill TM. Genetic deletion of Cyp26b1 negatively impacts limb skeletogenesis by inhibiting chondrogenesis. J Cell Sci. 2011;124:2723–34.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Duan Y, Dou S, Luo S, Zhang H, Lu J. Adaptation of A-to-I RNA editing in Drosophila. PLoS Genet. 2017;13(3):e1006648.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Franklin MR. Inhibition of mixed-function oxidations by substrates forming reduced cytochrome P-450 metabolic-intermediate complexes. In: Schenkman JB, Kupfer D, editors. Hepatic cytochrome P-450 monooxygenase system. New York: Pergomon Press; 1982. p. 763–83.Google Scholar
  28. Funatake CJ, Marshall NB, Steppan LB, Mourich DV, Kerkvliet NI. Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+ CD25+ cells with characteristics of regulatory T cells. J Immunol. 2005;175:4184–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Funatake CJ, Marshall NB, Kerkvliet NI. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters the differentiation of alloreactive CD8+ T cells toward a regulatory T cell phenotype by a mechanism that is dependent on aryl hydrocarbon receptor in CD4+ T cells. J Immunotoxicol. 2008;5:81–91.PubMedCrossRefGoogle Scholar
  30. Garrett S, Rosenthal JJC. RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science. 2012;335(6070):848–51.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11(4):344–9.PubMedCrossRefGoogle Scholar
  32. George CX, Samuel CE. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci U S A. 1999;96(8):4621–6.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ghezzi P, Saccardo B, Bianchi M. Recombinant tumor necrosis factor depresses cytochrome P450-dependent microsomal drug metabolism in mice. Biochem Biophys Res Commun. 1986;136:316–21.PubMedCrossRefGoogle Scholar
  34. Gilbert W. Origin of life: the RNA world. Nature. 1986;319(6056):618.CrossRefGoogle Scholar
  35. Gorodischer R, Yaari A, Margalith M, Warszawski D, Ben-Zvi Z. Changes in theophylline metabolism during postnatal development in rat liver slices. Biochem Pharmacol. 1986;35(18):3077–81.PubMedCrossRefGoogle Scholar
  36. Granik S. Evolution of heme and chlorophyll. In: Bryson V, Vogel HJ, editors. Evolutionary genes and proteins: a symposium held at the institute. New York: Academic Press; 1965. p. 67–88.CrossRefGoogle Scholar
  37. He XJ, Yamauchi H, Suzuki K, Ueno M, Nakayama H, Doi K. Gene expression profiles of drug-metabolizing enzymes (DMEs) in rat liver during pregnancy and lactation. Exp Mol Pathol. 2007;83:428–34.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Henderson CJ, McLaughlin LA, Wolf CR. Evidence that cytochrome b5 and cytochrome b5 reductase can act as sole electron donors to the hepatic cytochrome P450 system. Mol Pharmacol. 2013;83:1209–17.PubMedCrossRefGoogle Scholar
  39. Higgins GM, Anderson RM. Restoration of liver following partial surgical removal. Arch Pathol. 1931;12:186.Google Scholar
  40. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature. 2000;406(6791):78–81.CrossRefGoogle Scholar
  41. Hines RN, Levy JB, Conrad RD, Iversen PL, Shen ML, Bresnick E. Gene structure and nucleotide sequence for rat cytochrome P-450c. Arch Biochem Biophys. 1985;237:467–76.CrossRefGoogle Scholar
  42. Hodge LS, Tracy TS. Alterations in drug disposition during pregnancy: implications for drug therapy. Expert Opin Drug Metab Toxicol. 2007;3:557–71.PubMedCrossRefGoogle Scholar
  43. Holla VR, Adas F, Imig JD, Zhao X, Price E, Olsen N, Kovacs WJ, Magnuson MA, Keeney DS, Breyer MD, Falck JR, Waterman MR, Capdevila JH. Alterations in the regulation of androgen-sensitive Cyp 4a monooxygenases cause hypertension. PNAS. 2001;98:5211–6.PubMedCrossRefGoogle Scholar
  44. Iversen PL. Fractionation of subpopulations of cytochrome P-450 from control, regionally necrotic, and regenerating rat liver using high-pressure liquid chromatography. Dissertation, University of Utah Department of Biochemical Pharmacology and Toxicology; 1984.Google Scholar
  45. Iversen PL, Franklin MR. Microsomal cytochrome P-450 “handprints”: five fractions from anion-exchange HPLC provide a rapid preliminary screen for the induction and destruction of rat hepatic cytochrome P-450 subpopulations. Toxicol Appl Pharmacol. 1985;78:1–9.PubMedCrossRefGoogle Scholar
  46. Iversen PL, Liu Z, Franklin MR. Selective changes in cytochrome P-450 and UDP-glucuronosyl transferase subpopulations following partial hepatectomy in rats. Toxicol Appl Pharmacol. 1985;78:10–8.CrossRefGoogle Scholar
  47. Iversen PL, Heiger WJ, Bresnick E, Hines RN. Structural details of the human cytochrome P-450c gene. Arch Biochem Biophys. 1987a;256:397.CrossRefGoogle Scholar
  48. Iversen PL, Siegel LI, Rahner K, Bresnick E. Synergy of phenobarbital and 3-methylcholanthrene in superinduction of cytochrome P450c mRNA but not enzyme activity. Biochem Pharmacol. 1987b;36:3399–403.PubMedCrossRefGoogle Scholar
  49. Kay MA, Fausto N. Liver regeneration: prospects for therapy based on new technologies. Mol Med Today. 1997;3:108–15.PubMedCrossRefGoogle Scholar
  50. Keber R, Motaln H, Wagner KD, Debeljak N, Rassoulzadegan M, Acimovic J, Rozman D, Horvat S. Mouse knockout of the cholesterogenic cytochrome P450 lanosterol 14α-demethylase (Cyp51) resembles Antley-Bixler syndrome. J Biol Chem. 2011;286(33):29086–97.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Keilin D. The history of cell respiration and cytochrome. Cambridge: Cambridge University Press; 1966. p. 252–68.Google Scholar
  52. Kelly SL, Kelly DE. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Phil Trans R Soc B. 2013;368:20120476.PubMedCrossRefGoogle Scholar
  53. Kerkvliet NI. TCDD: an environmental immunotoxicant reveals a novel pathway of immunoregulation–a 30-year odyssey. Toxicol Pathol. 2012;40:138–42.PubMedCrossRefGoogle Scholar
  54. Kharkwal H, Batool F, Koentgen F, BellER, Kendall DA, Ebling JP, Duce IR. Generation and phenotypic characterization of a cytochrome P450 4x1 knockout mouse. PLoS One. 2017;12(12):e0187959.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Koh KH, Xie H, Yu AM, Jeong H. Altered cytochrome P450 expression in mice during pregnancy. Drug Metab Dispos. 2011;39:165–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kono K, et al. PPARα attenuates the proinflammatory response in activated mesangial cells. Am J Physiol Renal Physiol. 2009;296:F328–36.PubMedCrossRefGoogle Scholar
  57. Kraemer MJ, Furukawa CT, Koup JR, Shapria GG, Pierson WE, Bierman CS. Altered theophylline clearance during an influenza outbreak. Pediatrics. 1982;69(4):476–80.PubMedGoogle Scholar
  58. Kren BT, Trembley JH, Steer CJ. Alterations in mRNA stability during rat liver regeneration. Am J Phys. 1996;270:G763–77.CrossRefGoogle Scholar
  59. Kumar A, Deshane JS, Crossman DK, Bolisetty S, Yan BS, Kramnik I, Agrawal A, Steyn AJC. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem. 2008;283:18032–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lai GJ, McCobb DP. Opposing actions of adrenal androgens and glucocorticoids on alternative splicing of Slo potassium channels in bovine chromaffin cells. Proc Natl Acad Sci. 2002;99(11):7722–7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lawson RJ, Leys D, Sutcliffe MJ, Kemp CA, Cheesman RM, et al. Thermodynamic and biophysical characterization of cytochrome P450 biol from Bacillus subtilis. Biochemistry. 2004;43:12410–26.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lee SST, Buters JTM, Pineau T, Fernandez-Salguero P, Gonzalex FJ. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem. 1996;271:12063–7.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, Ziv T, Admon A, Levanon EY, Rosenthal JJC, Eisenberg E. Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell. 2017;169(2):191–202.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Liu Y, Yao ZX, Bendavid C, Borgmeyer C, Han Z, Cavalli LR, Chan WY, Folmer J, Zirkin BR, Haddad BR, Galllicano GI, Papadopoulos V. Haploinsufficiency of cytochrome P450 17α-hydroxylase/17,20 lyase (Cyp17)causes infertility in male mice. Mol Endocrinol. 2005;19(9):2380–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Liu S, Yao Y, Lu S, Aldous K, Ding X, Mei C, Gu J. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: utility of renal specific P450 reductase knockout mouse models. Toxicol Appl Pharmacol. 2013;272:230–7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lundqvist E, Johansson I, Ingelman-Sundberg M. Genetic mechanisms for duplication and multiplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene. 1999;226:327–38.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Maroder M, Martinotti S, Vacca A, Screpanti I, Petrageli E, Frati L, Gulino A. Post-translational contrl of c-myc proto-oncogene expression by glucocorticoid hormones in human T lymphoblastic leukemic cells. Nucleic Acids Res. 1990;18(5):1153–7.PubMedPubMedCentralCrossRefGoogle Scholar
  68. McLaughlin LA, Ronseaux S, Finn RD, Henderson CJ, Wolf CR. Deletion of microsomal cytochrome b5 profoundly effects hepatic and extrahepatic drug metabolism. Mol Pharmacol. 2010;78:269–78.PubMedCrossRefGoogle Scholar
  69. McLean KJ, Carroll P, Lewis DG, Dunford AJ, Seward HE, Neeli R, Cheesman MR, Marsollier L, Douglas P, Smith WE, Rosenkrands I, Cole ST, Leys D, Parish T, Munro AW. Characterization of active site structure in CYP121: a cytochrome P450 essential for viability of mycobacterium tuberculosis H37Rv. J Biol Chem. 2008;283(48):33406–16.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Meljon A, Wang Y, Griffiths WJ. Oxysterols in the brain of the cholesterol 24-hydroxylase knockout mouse. Biochem Biophys Res Commun. 2014;446:768–74.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Menotta M, Biagiotti S, Bianchi M, Chessa L, Magnani M. Dexamethasone partially rescues ataxia telangiectasia-mutted (ATM) deficiency by promoting a shortened protein variant retaining kinase activity. J Biol Chem. 2012;287:41352–63.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Michalopoulos GK, DeFrances MC. Liver regeneration. Science (Washington DC). 1997;276:60–6.CrossRefGoogle Scholar
  73. Morgan ET. Suppression of consititutive cytochrome P-450 gene expression in livers of rats undergoing an acute phase response to endotoxin. Mol Pharmacol. 1989;36:699–707.PubMedPubMedCentralGoogle Scholar
  74. Morse D, Lin L, Choi AMK, Ryter SW. Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. Free Radic Biol Med. 2009;47:1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc B. 2013;368:20120431.CrossRefGoogle Scholar
  76. Nishimaki-mogami T, Takahashi A, Hayashi Y. Activation of a peroxisome-proliferating catabolite of cholic acid to its CoA ester. Biochem J. 1993;296:265–70.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nobre LS, Seixas JD, Romao CC, Saraiva LM. Antimicrobial action of carbon monoxide-releasing compounds. Antimicrob Agents Chemother. 2007;51:4303–7.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosinoids. Science. 1999;285(5431):1276–79.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nyagode BA, Williams IR, Morgan ET. Altered inflammatory responses to Citrobacter rodentium infection, but not bacterial lipopolysaccharide, in mice lacking the Cyp4a10 or Cyp4a14 genes. Inflammation. 2014;37(3):893–907.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Omura T, Sato R. A new cytochrome in liver microsomes. J Biol Chem. 1962;237:1375–6.PubMedPubMedCentralGoogle Scholar
  81. Ouellet J, Johnston JB, Ortiz de Montellano PR. The Mycobacterium tuberculosis cytochrome P450 system. Arch Biochem Biophys. 2010;493(1):82–95.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Paek I, Axel R. Glucocorticoids enhance stability of human growth hormone mRNA. Mol Cell Biol. 1987;7(4):1496–507.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Park E, Lee MS, Baik SM, Cho EB, Son GH, Seong JY, Lee KH, Kim K. Nova-1 mediates glucocorticoid-induced inhibition of pre-mRNA splicing of gonadotropin-releasing hormone transcripts. J Biol Chem. 2009;284(19):12792–800.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Punj S, Kopparapu P, Jang HS, Phillips JL, Pennington J, Rohlman D, O’Donnell E, Iversen PL, Kolluri SK, Kerkvliet NI. Benzimidazoisoquinolines: a new class of rapidly metabolized Ary Hydrocarbon Receptor (AhR) ligands that induce Ahr-dependent Tregs and prevent murine graft-versus-host disease. PLoS One. 2014;9(2):e88726. PMID 24586378PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pybus BS, Marcsisin SR, Jin X, Deye G, Sousa JC, Li Q, Caridha D, Zeng Q, Reichard GA, Ockenhouse C, Bennett J, Walker LA, Ohrt C, Melendez V. The metabolism of primaquine to its active metabolite is dependent on Cyp2d6. Malar J. 2013;12:212.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453:65–71.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Quintana FJ, Murugaiyan G, Farez MF, Mitsdoerffer M, Tukpah AM, et al. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2010;107:20768–73.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rengarajan J, Bloom BR, Rubin EJ. Genome-wide requirements for Mycobacterium tuberculosis adaption and survival in macrophages. Proc Natl Acad Sci U S A. 2005;102(3):8327–32.Google Scholar
  89. Renton KW. Factors affecting drug biotransformation. Clin Biochem. 1986;19:72–5.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rieder LE, Savva YA, Reyna MA, Chang Y-J, Dorsky JS, Rezaei A, et al. Dynamic response of RNA editing to temperature in Drosophila. BMC Biol. 2015;13:1.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rivory LP, Slaviero KA, Clarke SJ. Hepatic cytochrome P4503A drug metabolism is reduced in cancer patients who have an acute-phase response. Br J Cancer. 2002;87:277–80.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, et al. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol. 2003;126:129–42.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Robertson KM, O’Donnell L, Jones MEE, Meachem SJ, Boon WC, Fisher CR, Graves KH, McLachlan RI, Simpson ER. Impairment of spermatogenesis in mice lacking a functional aromatase (cyp19) gene. PNAS USA. 1999;96:7981–91.CrossRefGoogle Scholar
  94. Rowling MJ, Gliniak C, Welsh J, Fleet JC. High dietary vitamin D prevents hypocalcemia and osteomalacia in CYP27B1 knockout mice. J Nutr. 2007;137(12):2608–15.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A. 2003;100(22):12989–94.CrossRefGoogle Scholar
  96. Scheer N, McLaughlin LA, Rode A, MacLeod AK, Henderson CJ, Wolf CR. Deletion of 30 murine cytochrome P450 genes results in viable mice with compromised drug metabolism. Drug Metab Dispos. 2014;42:1022–30.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Schumacher A, Costa SD, Zenclussen AC. Endocrine factors modulating immune responses in pregnancy. Fron Immunol. 2014;5(196):1–11.Google Scholar
  98. Schwarz M, Russell DW, Dietschy JM, Turley SD. Alternate pathways of bile synthesis in the cholesterol 7α-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding. J Lipid Res. 2001;42:1594–603.PubMedPubMedCentralGoogle Scholar
  99. Shedlofsky SI, Swim AT, Robinson JM, Gallicchio VS, Cohen DA, McClain CJ. Interleukin-1 (IL-1) depresses cytochrome P450 levels and activities in mice. 1987;40(24):2331–36.Google Scholar
  100. Shiloh MU, Manzanillo P, Cox JS. Mycobacterium tuberculosis sense host-derived carbon monoxide during macrophage infection. Cell Host Microbe. 2008;3:323–30.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sidhu JS, Omiecinski CJ. cAMP-associated inhibition of phenobarbital inducible cytochrome P450 gene expression in primary hepatocyte cultures. J Biol Chem. 1995;270(21):12762–73.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Siewart E, et al. Hepatic cytochrome P450 downregulation during asceptic inflammation in mouse is interleukin 6 dependent. Hepatology. 2000;32:49–55.CrossRefGoogle Scholar
  103. St-Arnoud. Cyp24A1-deficient mice as a tool to uncover a biological activity for vitamin D metabolites hydroxylation at position 24. J Steroid Biochem Mol Biol. 2010;121(1–2):254–6.CrossRefGoogle Scholar
  104. Sun P, Antoun J, Lin DH, Yue P, Gotlinger KH, Capdevila J, Wang WH. Cyp2c44 epoxygenase is essential for preventing the renal sodium absorption during increasing dietary potassium intake. Hypertension. 2012;59:339–47.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sunman JA, et al. Kupffer cell-=mediated IL-2 suppression of CYP3A activity in human hepatocytes. Drug Metab Dispos. 2004;32:359–63.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, et al. Dynamic landscape and regulation of RNA editing in mammals. Nature. 2017;550(7675):249–54.PubMedPubMedCentralCrossRefGoogle Scholar
  107. The Nobel Prize in Chemistry. For their discovery of catalytic properties of RNA; 1989.Google Scholar
  108. Vaglini F, Viaggi C, Piro V, Pardini C, Gerace C, Scarselli M, Corsini GU. Acetaldehyde and parkinsonism: role of CYP450 2E1. Front Behav Neurosci. 2013;7:71.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Vaivoda R, Vaine C, Boerstler C, Galloway K, Christmas P. CYP4F18-deficient neutrophils exhibit increased chemotaxis to complement component C5a. J Immunol Res. 2015; ID 250456:1–10.CrossRefGoogle Scholar
  110. Van Herwaarden AE, Wagenaar E, van der Kruijssen CMM, van Waterschoot RAB, Smit JW, Song JY, van der Valk MA, van Tellingen O, van der Hoorn JWA, Rosing H, Beijnen JH, Schinkel AH. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J Clin Invest. 2007;11:3583–92.CrossRefGoogle Scholar
  111. Verma S, Mehta A, Shaha C. CYP5122A1, a novel cytochrome P450 is essential for survival of Leishmania donovani. PLoS One. 2011;6(9):e25273.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Voronov P, Przybylo HJ, Jagannathan N. Apnea in a child after oral codeine: a genetic variant-an ultra-rapid metabolizer. Paediatr Anaesth. 2007;17:684–7.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Waldman T, Lengauer C, Kinzler KW, Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature (London). 1996;381:713–6.CrossRefGoogle Scholar
  114. Wareham LK, Poole RK, Tinajero-Trejo M. CO-releasing metal carbonyl compounds as antimicrobial agents in the post-antibiotic era. J Biol Chem. 2015;290(31):18999–9007.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wasser IM, Huang HW, Moenne-Loccoz P, Karlin KD. Heme/non-heme diiron (II) complexes and O2, CO, and NO adducts as reduced and substrate-bound models for the active site of bacterial nitric oxide reductase. J Am Chem Soc. 2005;127:3310–20.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Wegiel B, Larsen R, Gallo D, Chin BY, Harris C, Mannam P, Kaczmarek E, Lee PJ, Zuckerbraun BS, Flavell R, Soares MP, Otterbein LE. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation. J Clin Invest. 2014;124(11):4926–40.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wei Y, Li L, Zhou X, Zhang QY, Dunbar A, Liu F, Kluetzman K, Yang W, Ding X. Generation and characterization of a novel Cyp2a(4/5)bgs-null mouse model. Drug Metab Dispos. 2013;41:132–40.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wickramashighe RH, Ville CA. Early role during chemical evolution for cytochrome P450 in oxygen detoxification. Nature. 1975;256:509–210.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Xu CS, Zhang AS, Han HP, Yuan JY, Chang CF, Li WQ, Yang KJ, Zhao LF, Li YC, Zhang HY, Rahman S, Zhang JB. Gene expression differences of regenerating rat liver in a short interval successive partial hepatectomy. World J Gastroenterol. 2004;10(18):2680–9.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yokoyama C, Yabuki T, Shimonishi M, Wada M, Hatae T, Ohkawara S, Takeda J, Kinoshita T, Okabe M, Tanabe T. Prostacyclin-deficient mice develop ischemic renal disorders, including nephrosclerosis and renal infarction. Circulation. 2002;106:2397–403.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Yu IS, Lin SR, Huang CC, Tseng HY, Huang PH, Shi GY, Wu HL, Tang CL, Chu PH, Wang LH, Wu KK, Lin SW. TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death. Blood. 2004;104:135–42.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Zhang H, Xu X, Wnag H, Mikheev AM, Mao Q, Unadkat JD. Effect ofpregnancy on cytochrome P450 3a and P-glycoprotein expression and activity in the mouse: mechanisms, tissue specificity, and time course. Mol Pharmacol. 2008;74:714–23.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ziniel PD, Karumudi B, Bamard AH, Fisher EMS, Thatcher GRJ, Podust LM, et al. The Schistosoma mansoni cytochrome P450 (CYP3050A1) is essential for worm survival and egg development. PLoS Negl Trop Dis. 2015;9(12):e0004279.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Patrick L. Iversen
    • 1
  1. 1.LS PharmaOregon State UniversityGrand JctUSA

Personalised recommendations