Advertisement

Immune Defense

  • Patrick L. Iversen
Chapter

Abstract

The world is full of life forms that threaten human health but they meet the most sophisticated immune defense system on Earth. The immune system continues to evolve shaped by changing pathogens. Pathogens counter with their own evolution probing for weak immune defenses. However, the ongoing emergence of new and re-emerging viral threats and drug resistant bacteria, fungi, and parasites mean immune defenses can rapidly adapt. This resilience is reflected in RNA transcripts that are part of the complex immune defense system.

Keywords

Restriction endonucleases Innate immunity Natural T-killer Pattern recognition receptors Adaptive immunity Autoimmunity Immunosuppression 

References

  1. Agrawal A, Eastman QM, Schatz DG. Transposon mediated by RAG-1 and RAG-2 and its implications for the evolution of the immune system. Nature. 1998;394:744–51.CrossRefGoogle Scholar
  2. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.CrossRefGoogle Scholar
  3. Araki M, Chung D, Liu S, Rainbow DB, Chamberlain G, Garner V, et al. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J Immunol. 2009;183(8):5146–57.CrossRefGoogle Scholar
  4. Arber W, Linn S. DNA modification and restriction. Annu Rev Biochem. 1969;38:467–500.CrossRefGoogle Scholar
  5. Ashman RF, Goeken JA, Latz E, Lenert P. Optimal oligonucleotide sequences for TLR9 inhibitory activity in human cells: lack of correlation with TLR9 binding. Int Immunol. 2011;23:203–14.CrossRefGoogle Scholar
  6. Baize S, Leroy EM, Georges AJ, Georges-Courbot MC, Capron M, Bedjabaga I, Lansoud-Soukate J, Mavoungou E. Inflammatory responses in Ebola virus-infected patients. Clin Exp Immunol. 2002;128:163–8.CrossRefGoogle Scholar
  7. Barti S, Baltimore D, Weissman IL. Molecular evolution of the vertebrate immune system. Proc Natl Acad Sci U S A. 1994;91:10769–70.CrossRefGoogle Scholar
  8. Beaulieu MJ, Li H, Bergeron J, Ross G, Auger FA, Rouabhia M. Involvement of male-specific minor histocompatibility antigen H-Y in epidermal equivalent allograft rejection. Cell Transplant. 1998;7:11–23.CrossRefGoogle Scholar
  9. Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B, Freeman GJ. CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Nat Immunol. 2008;9:176–85.  https://doi.org/10.1038/ni1554.CrossRefPubMedGoogle Scholar
  10. Chu JL, Brot N, Weissback H, Elkorn K. Lupus antiribosomal P antisera contain antibodies to a small fragment of 28S rRNA located in the proposed ribosomal GTPase center. J Exp Med. 1991;174:507–14.CrossRefGoogle Scholar
  11. Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180:5771–7.CrossRefGoogle Scholar
  12. De Sousa M. T lymphocytes and iron overload: novel correlations of possible significance to the biology of the immunological system. Mem Inst Oswaldo Cruz. 1992;87:23–9.CrossRefGoogle Scholar
  13. Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, Crotty S, von Herrath MG. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J Exp Med. 2006;203:2461–72.CrossRefGoogle Scholar
  14. Enterlein S, Warfield KL, Swenson DL, Stein DA, Smith JL, Gamble CS, Kroeker AD, Iversen PL, Bavari S, Muhlberger K. VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob Agents Chemother. 2006;50(3):984–93.CrossRefGoogle Scholar
  15. Fabozzi G, Nabel CS, Ma D, Sullivan NJ. Ebolavirus proteins suppress the effects of small interfering RNA by direct interaction with the mammalian RNA interference pathway. J Virol. 2011;85:2512–23. PubMed: 21228243CrossRefGoogle Scholar
  16. Field AK, Tyrell AA, Lampson GP, Hillman MR. Inducers of interferon and host resistance, II. Multiple synthetic polynucleotide complexes. Proc Natl Acad Sci U S A. 1967;58:1004–10.CrossRefGoogle Scholar
  17. Giltiay NV, Chappell CP, Sun X, Kolhatkar N, Teal TH, Wiedeman AE, Kim J, Tanaka L, Buechler MB, Hamerman JA, Imanishi-Kara T, Clark EA, Elkon KB. Overexpression of TLR7 promotes cell-intrinsic expansion and autoantibody production by transitional T1 B cells. J Exp Med. 2013;210:2773–89.CrossRefGoogle Scholar
  18. Giustiniani J, Bensussan A, Marie-Cardine A. Identification and characterization of a transmembrane isoform of CD160 (CD160-TM), a unique activating receptor selectively expressed upon human NK cell activation. J Immunol. 2009;182(1):63–71.CrossRefGoogle Scholar
  19. Good RA, Finstad J. The Gordon Wilson Lecture, “The development and involution of the lymphatic system and immunologic capacity.” Trans Am Clin Climatol Assoc. 1968;79:69–107.Google Scholar
  20. Grusel I, et al. Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J Immunol. 2003;171:1393–400.CrossRefGoogle Scholar
  21. Hanawalt PC, Cooper PK, Ganesan AK, Smith CA. DNA repair in bacteria and mammalian cells. Annu Rev Biochem. 1979;48:783–836.CrossRefGoogle Scholar
  22. Hartmann G, Weeratna RD, Ballas ZK, Blackwell PS, Suparto I, Rasmusse WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM. Delineation of a CpG phophorothioate oligonucleotide for activating primate immune responses in vitro and in vivo. J Immunol. 2000;164:1617–24.CrossRefGoogle Scholar
  23. Hendrix CW, Margolik JB, Petty BG, Markham RB, Nerhood L, Farzadegan H, Tso POP, Lietman PS. Biologic effects after a single dose of poly(I):poly(C12U) in healthy volunteers. Antimicrob Agents Chemother. 1993;37(3):429–35.CrossRefGoogle Scholar
  24. Hwang SH, Lee H, Yamamoto M, Jones LA, Dayalan J, Hopkins R, Zhou XJ, Yarovinsky F, Connolly JE, Laffaille MAC, Wakeland EK, Fairhurst AM. B cell-TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in SLE-prone mice. J Immunol. 2012;189:5786–96.CrossRefGoogle Scholar
  25. Iversen PL. Chapter 26: In vivo studies with phosphorothioate oligonucleotides: rationale for systemic therapy. In: Crooke S, Lebleau B, editors. Antisense research and applications. Boca Raton: CRC Press; 1993.Google Scholar
  26. Iversen PL. Structure activity study of clinically observed adverse events and oligomer chemistry. J Drug Discov Develop Deliv. 2016;3(2):1022.Google Scholar
  27. Kahn LH. The growing number of immunocompromised. Bull At Sci. 2008;1:1–3.Google Scholar
  28. Kaiser S, Rimbach K, Eigenbrod T, Dalpke AH, Helm M. A modified dinucleotide motif specifies tRNA recognition by TLR7. RNA. 2014;20:1351–5.CrossRefGoogle Scholar
  29. Kandimalla ER, Agrawal S. Modulation of endosomal toll-like receptor-mediated immune responses by synthetic oligonucleotides. Adv Polym Sci. 2012;249:61–94.Google Scholar
  30. Kandimalla ER, Bhagat L, Wang D, Yu D, Sullivan T, La Monica N, Agrawal S. Design, synthesis and biological evaluation of novel antagonist compouinds of toll-like receptors 7, 8 and 9. Nucleic Acids Res. 2013;41(6):3947–61.CrossRefGoogle Scholar
  31. Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon γ. Proc Natl Acad Sci U S A. 1999;93:2879–83.CrossRefGoogle Scholar
  32. Krieg AM. CpG still rocks! update on an accidental drug. Nucleic Acid Ther. 2012;22(2):77–89.CrossRefGoogle Scholar
  33. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–65.CrossRefGoogle Scholar
  34. Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med. 1996;183(6):2533–40.CrossRefGoogle Scholar
  35. Kuhn JH. In: Calisher CH, editor. Filoviruses: a compendium of 40 years of epidemiological, clinical, and laboratory studies. New York: Springer-Verlag/Wein; 2008. p. 313.Google Scholar
  36. Kunisaki KM, Janoff EN. Influenza in immunosuppressed populations. Lancet Infect Dis. 2009;9(8):493–504.CrossRefGoogle Scholar
  37. Litman GW, Cannon JP, Dishaw LJ. Reconstructing immune phylogeny: new perspectives. Nat Rev Immunol. 2005;5(11):866–79.CrossRefGoogle Scholar
  38. Liu MF, Wang CR, Chen PC, Fung LL. Increased expression of soluble cytotoxic T-lymphocyte-associated antigen-4 molecule in patients with systemic lupus erythematosus. Scand J Immunol. 2003;57(6):568–72.CrossRefGoogle Scholar
  39. Luthra P, Ramanan P, Mire CE, Weisend C, Tsuda Y, Yen B, Liu G, Leung DW, Geisbert TW, Ebihara H, et al. Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome. Cell Host Microbe. 2013;14:74–84. PubMed: 23870315CrossRefGoogle Scholar
  40. Maiza H, Leca IG, Mansur IG, Schiavon V, Boumsell L, Bensussan A. A novel 80-kD cell surface structure identifies human circulating lymphocytes with natural killer activity. J Exp Med. 1993;178:1121–6.CrossRefGoogle Scholar
  41. Market E, Papavasiliou FN. V(D)J recombination and the evolution of the adaptive immune system. PLoS Biol. 2003;1(1):024.  https://doi.org/10.1371/journal.pbio.0000016.CrossRefGoogle Scholar
  42. Martin IV, NacNeill SA. ATP-dependent DNA ligases. Genome Biol. 2002;3(4). reviews3005.1–3005.7CrossRefGoogle Scholar
  43. Matsukura M, Zon G, Shiozuka K, Robert-Guroff M, Shimada T, Stein C, Mitsuya H, Wong-Staal F, Cohen JS, Broder S. Regulation of viral expression of human immunodeficiency virus in vitro by an antisense phosphorothioate oligodeoxyribonucleotide against rev (art/trs) in chronically infected cells. Proc Natl Acad Sci USA. 1989;86:4244.CrossRefGoogle Scholar
  44. Medzhitov R, Janeway CA. Innate immunity: the virtues of a nonclonal system of recognition. Cell. 1997;91:295–8.CrossRefGoogle Scholar
  45. Mourich DV, Jendrzejewski JL, Marshall NB, Hinrichs DJ, Iversen PL, Brand RM. Antisense targeting of cFLIP sensitizes activated T cells to undergo apoptosis and desensitizes responses to contact dermatitis. J Investig Dermatol. 2009;129(8):1945–53.CrossRefGoogle Scholar
  46. Mourich DV, Oda SK, Schnell FJ, Crumley SL, Hauck LL, Moentenich CA, Marshall NB, Hinrichs DJ, Iversen PL. Alternate splice forms of CTLA-4 induced by antisense mediated splice-switching, switching influences autoimmune diabetes susceptibility in NOD mice. Nucleic Acid Ther. 2014;24:114–26.CrossRefGoogle Scholar
  47. Peretz Y, He Z, Shi Y, Yassine-Diab B, Goulet JP, Bordi R, Filali-Mouhim A, Loubert JB, El-Far M, Dupuy FP, Boulassel MR, Tremblay C, Routy JP, Bernard N, Balderas R, Haddad EK, Sekaly RP. CD160 and PD-1 co-expression on HIV-specific CD8 T cells defines a subset with advanced dysfunction. PLoS Pathog. 2012a;8:e1002840.CrossRefGoogle Scholar
  48. Peretz Y, He Z, Shi Y, Yassine-Diab B, Goulet J-P, et al. CD160 and PD-1 co-expression on HIV-specific CD8 T cells defines a subset with advanced dysfunction. PLoS Pathog. 2012b;8(8):e1002840.  https://doi.org/10.1371/journal.ppat.1002840.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rinkevich B. Invertebrates versus vertebrate innate immunity: in the light of evolution. Scand J Immunol. 1999;50:456–60.CrossRefGoogle Scholar
  50. Simone R, Saverino D. The soluble CTLA-4 receptor and its emerging role in autoimmune diseases. Curr Immunol Rev. 2009;5(1):54–68.CrossRefGoogle Scholar
  51. Srahna M, Van Grunsven LA, Remacle JE, Vandenberghe P. CTLA-4 interacts with STAT5 and inhibits STAT5-mediated transcription. Immunology. 2006;117(3):396–401.CrossRefGoogle Scholar
  52. Stevenson M, Iversen PL. Inhibition of HIV mediated Cytopathicityby poly-L-lysine conjugated synthetic antisense Oligodeoxyribonucleotides. J Gen Virol. 1989;70:2673–82.CrossRefGoogle Scholar
  53. Strayer DR, et al. Activity of a synthetic dsRNA-Ampligen- in HIV disease. Clin Biotechnol. 1991;3:160–75.Google Scholar
  54. Strayer DR, Carter WA, Stouch BC, Stevens SR, Bateman L, et al. A double-blind, placebo-controlled, randomized, clinical trial of the TLR3 agonist Rintatolimod in severe cases of chronic fatigue syndrome. PLoS One. 2012;7(3):e31334.CrossRefGoogle Scholar
  55. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal Os that spur autophagy and immunity. Immunol Rev. 2012;249:158–75.CrossRefGoogle Scholar
  56. Tu TC, Brown NK, Kim TJ, Wroblewska J, Yang X, Guo X, Lee SH, Kumar V, Lee KM, Fu YX. CD160 is essential for NK-mediated IFNγ production. J Exp Med. 2015;212(3):415–29.CrossRefGoogle Scholar
  57. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506–11.CrossRefGoogle Scholar
  58. Uhrberg M. The KIR gene family: life in the fast lane of evolution. Eur J Immunol. 2005;35:10–5.CrossRefGoogle Scholar
  59. Vijayakrishnan L, Slavik JM, Illes Z, Greenwald RJ, Rainbow D, Greve B, et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity. 2004;20(5):563–75.CrossRefGoogle Scholar
  60. Villinger F, Rollin PE, Brar SS, Chikkala NF, Winter J, Sundstrom JB, Zaki SR, Swanepoel R, Ansari AA, Peters CJ. Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J Infect Dis. 1999;179(Suppl 1):S188–91.CrossRefGoogle Scholar
  61. Vollmer J, Krieg AM. Mechanisms and therapeutic applicatiions of immune modulatory oligodeoxynucleotide and oligoribonucleotide ligands for toll-like receptors. In: Crooke ST, editor. Antisense drug technology principles, strategies, and applications. Boca Raton: CRC Press; 2008. p. 747–72.Google Scholar
  62. Warfield KL, Swenson DL, Olinger GG, Nichols DK, Pratt WD, Blouch R, Stein DA, Aman MJ, Iversen PL, Bavari S. Gene-specific countermeasures against Ebola virus based on antisense Phosphorodiamidate Morpholino oligomers. PLoS Pathog. 2006;2(1):1–9.CrossRefGoogle Scholar
  63. Warren TK, Whitehouse CA, Wells J, Welch L, Charleston JS, Heald A, Nichols DK, Mattix ME, Palacios G, Kugleman JR, Iversen PL, Bavari S. Delayed time-to-treatment of an antisense morpholino oligomer is effective against lethal marburg Virus infection in Cynomolgus macaques. PLoS Negl Trop Dis. 2016;10(2):e0004456. PMID 26901785CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Patrick L. Iversen
    • 1
  1. 1.LS PharmaOregon State UniversityGrand JctUSA

Personalised recommendations