Advertisement

Role of Autophagy in Aging of Hematopoietic Stem Cells and Their Niche: Relevance in Clinical Transplantations and Regenerative Medicine

  • Rohan S. Kulkarni
  • Manmohan Bajaj
  • Vaijayanti P. Kale
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Stem cell transplantation (SCT) is the only curative therapy for various malignant as well as nonmalignant disorders like leukemia, lymphoma, and aplastic anemia. Efficacy of clinical transplantation critically depends on functionality of the hematopoietic stem cells (HSCs) present in the donor graft, and therefore, it is essential that every precaution should be taken to ensure that the donor HSCs possess good engraftment ability. Aging is known to cause decrease in the functionality of HSCs, and, therefore, clinicians prefer younger donors. However, if only a single HLA-matched aged donor is available, the patient may not be able to avail the life-saving SCT treatment. It is therefore necessary to device strategies to reverse the aging of HSCs. Here we shall review the available literature on the role of autophagy in the functionality of HSCs and their niche cells. We shall also discuss the importance of induction of autophagy in reversal of aging-mediated dysfunction in them and its relevance in clinical SCT and other regenerative medicine protocols.

Keywords

Autophagy Aging Hematopoietic stem cells Transplantation Rejuvenation 

References

  1. 1.
    Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, Verovskaya EV, Figueroa ME, Passegué E. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543(7644):205.CrossRefGoogle Scholar
  2. 2.
    Kulkarni R, Bajaj M, Ghode S, Jalnapurkar S, Limaye L, Kale VP. Intercellular transfer of microvesicles from young mesenchymal stromal cells rejuvenates aged murine hematopoietic stem cells. Stem Cells. 2018;36(3):420–33.CrossRefGoogle Scholar
  3. 3.
    Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell. 2011;146(5):682–95.CrossRefGoogle Scholar
  4. 4.
    Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest. 2005;115(10):2679–88.CrossRefGoogle Scholar
  5. 5.
    Wirawan E, Berghe TV, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse. Cell Res. 2012;22(1):43.CrossRefGoogle Scholar
  6. 6.
    Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9(12):1004.CrossRefGoogle Scholar
  7. 7.
    Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41.CrossRefGoogle Scholar
  8. 8.
    Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010;90(4):1383–435.CrossRefGoogle Scholar
  9. 9.
    Choi KS. Autophagy and cancer. Exp Mol Med. 2012;44(2):109.CrossRefGoogle Scholar
  10. 10.
    Nah J, Yuan J, Jung YK. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells. 2015;38(5):381.CrossRefGoogle Scholar
  11. 11.
    Mei Y, Thompson MD, Cohen RA, Tong X. Autophagy and oxidative stress in cardiovascular diseases. Biochim Biophys Acta. 2015;1852(2):243–51.CrossRefGoogle Scholar
  12. 12.
    Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res. 2012;22(2):432.CrossRefGoogle Scholar
  13. 13.
    Liu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ, Guan JL. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood. 2010;116(23):4806–14.CrossRefGoogle Scholar
  14. 14.
    Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SE, Kranc KR. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med. 2011;208:455.CrossRefGoogle Scholar
  15. 15.
    Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci. 2008;105(9):3374–9.CrossRefGoogle Scholar
  16. 16.
    Daitoku H, Sakamaki JI, Fukamizu A. Regulation of FoxO transcription factors by acetylation and protein–protein interactions. Biochim Biophys Acta. 2011;1813(11):1954–60.CrossRefGoogle Scholar
  17. 17.
    Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem. 2011;286(9):7468–78.CrossRefGoogle Scholar
  18. 18.
    Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem. 2009;284(41):28319–31.CrossRefGoogle Scholar
  19. 19.
    Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–93.CrossRefGoogle Scholar
  20. 20.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.CrossRefGoogle Scholar
  21. 21.
    Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity? Nat Cell Biol. 2010;12(9):842.CrossRefGoogle Scholar
  22. 22.
    Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegué E. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature. 2013;494(7437):323–7.CrossRefGoogle Scholar
  23. 23.
    Leveque-El Mouttie L, Vu T, Lineburg KE, Kuns RD, Bagger FO, Teal BE, Lor M, Boyle GM, Bruedigam C, Mintern JD, Hill GR. Autophagy is required for stem cell mobilization by G-CSF. Blood. 2015;125(19):2933–6.CrossRefGoogle Scholar
  24. 24.
    Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J. Autophagy in stem cells. Autophagy. 2013;9(6):830–49.CrossRefGoogle Scholar
  25. 25.
    Phadwal K, Watson AS, Simon AK. Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci. 2013;70(1):89–103.CrossRefGoogle Scholar
  26. 26.
    Vessoni AT, Filippi-Chiela EC, Menck CF, Lenz G. Autophagy and genomic integrity. Cell Death Differ. 2013;20(11):1444.CrossRefGoogle Scholar
  27. 27.
    Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med. 2007;204(1):25–31.CrossRefGoogle Scholar
  28. 28.
    Joshi A, Kundu M. Mitophagy in hematopoietic stem cells: the case for exploration. Autophagy. 2013;9(11):1737–49.CrossRefGoogle Scholar
  29. 29.
    Hsu P, Qu CK. Metabolic plasticity and hematopoietic stem cell biology. Curr Opin Hematol. 2013;20(4):289.CrossRefGoogle Scholar
  30. 30.
    Bowie MB, Kent DG, Dykstra B, McKnight KD, McCaffrey L, Hoodless PA, Eaves CJ. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc Natl Acad Sci. 2007;104(14):5878–82.CrossRefGoogle Scholar
  31. 31.
    Manesia JK, Xu Z, Broekaert D, Boon R, van Vliet A, Eelen G, Vanwelden T, Stegen S, Van Gastel N, Pascual-Montano A, Fendt SM. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways. Stem Cell Res. 2015;15(3):715–21.CrossRefGoogle Scholar
  32. 32.
    Vannini N, Girotra M, Naveiras O, Nikitin G, Campos V, Giger S, Roch A, Auwerx J, Lutolf MP. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat Commun. 2016;7:13125.CrossRefGoogle Scholar
  33. 33.
    Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010;22(4):507–13.CrossRefGoogle Scholar
  34. 34.
    Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447(7145):725.CrossRefGoogle Scholar
  35. 35.
    deHaan G, Van Zant G. Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood. 1999;93(10):3294–301.Google Scholar
  36. 36.
    Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 2007;5(8):e201.CrossRefGoogle Scholar
  37. 37.
    Wang J, Lu X, Sakk V, Klein CA, Rudolph KL. Senescence and apoptosis block hematopoietic activation of quiescent hematopoietic stem cells with short telomeres. Blood. 2014;124(22):3237–40.CrossRefGoogle Scholar
  38. 38.
    Pearce DJ, Anjos‐Afonso F, Ridler CM, Eddaoudi A, Bonnet D. Age‐dependent increase in side population distribution within hematopoiesis: implications for our understanding of the mechanism of aging. Stem Cells. 2007;25(4):828–35.CrossRefGoogle Scholar
  39. 39.
    Nguyen-McCarty M, Klein PS. Autophagy is a signature of a signaling network that maintains hematopoietic stem cells. PLoS One. 2017;12(5):e0177054.CrossRefGoogle Scholar
  40. 40.
    deHaan G, Lazare S. Aging of hematopoietic stem cells. Blood. 2018;131:479.CrossRefGoogle Scholar
  41. 41.
    Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12(4):446.CrossRefGoogle Scholar
  42. 42.
    Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, Haynes CM, Chen D. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science. 2015;347(6228):1374–7.CrossRefGoogle Scholar
  43. 43.
    Norddahl GL, Pronk CJ, Wahlestedt M, Sten G, Nygren JM, Ugale A, Sigvardsson M, Bryder D. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell. 2011;8(5):499–510.CrossRefGoogle Scholar
  44. 44.
    Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008;129(3):163–73.CrossRefGoogle Scholar
  45. 45.
    Ishikawa ET, Gonzalez-Nieto D, Ghiaur G, Dunn SK, Ficker AM, Murali B, Madhu M, Gutstein DE, Fishman GI, Barrio LC, Cancelas JA. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci. 2012;109(23):9071–6.CrossRefGoogle Scholar
  46. 46.
    Asumda FZ, Chase PB. Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biol. 2011;12(1):44.CrossRefGoogle Scholar
  47. 47.
    Singh S, Ghode S, Devi MR, Limaye L, Kale V. Phenotypic and functional characterization of a marrow-derived stromal cell line, M210B4 and its comparison with primary marrow stromal cells. Biomed Res J. 2015;2(1):120–33.Google Scholar
  48. 48.
    Tuljapurkar SR, McGuire TR, Brusnahan SK, Jackson JD, Garvin KL, Kessinger MA, Lane JT, O’Kane BJ, Sharp JG. Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging. J Anat. 2011;219(5):574–81.CrossRefGoogle Scholar
  49. 49.
    Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–63.CrossRefGoogle Scholar
  50. 50.
    Kennedy DE, Knight KL. Inhibition of b lymphopoiesis by adipocytes and il-1–producing myeloid-derived suppressor cells. J Immunol. 2015;195(6):2666–74.CrossRefGoogle Scholar
  51. 51.
    Bellantuono I, Aldahmash A, Kassem M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochim Biophys Acta. 2009;1792(4):364–70.CrossRefGoogle Scholar
  52. 52.
    Freemont AJ, Hoyland JA. Morphology, mechanisms and pathology of musculoskeletal ageing. J Pathol. 2007;211(2):252–9.CrossRefGoogle Scholar
  53. 53.
    Wagner W, Horn P, Bork S, Ho AD. Aging of hematopoietic stem cells is regulated by the stem cell niche. Exp Gerontol. 2008;43(11):974–80.CrossRefGoogle Scholar
  54. 54.
    Pennock R, Bray E, Pryor P, James S, McKeegan P, Sturmey R, Genever P. Human cell dedifferentiation in mesenchymal condensates through controlled autophagy. Sci Rep. 2015;5:13113.CrossRefGoogle Scholar
  55. 55.
    Kasper G, Mao L, Geissler S, Draycheva A, Trippens J, Kühnisch J, Tschirschmann M, Kaspar K, Perka C, Duda GN, Klose J. Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells. 2009;27(6):1288–97.CrossRefGoogle Scholar
  56. 56.
    Oliver L, Hue E, Priault M, Vallette FM. Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev. 2012;21(15):2779–88.CrossRefGoogle Scholar
  57. 57.
    Li J, Zhou J, Zhang D, Song Y, She J, Bai C. Bone marrow‐derived mesenchymal stem cells enhance autophagy via PI3K/AKT signalling to reduce the severity of ischaemia/reperfusion‐induced lung injury. J Cell Mol Med. 2015;19(10):2341–51.CrossRefGoogle Scholar
  58. 58.
    Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, Xu H. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev. 2012;21(8):1321–32.CrossRefGoogle Scholar
  59. 59.
    Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L, Bugarski D, Trajkovic V. Coordinated time-dependent modulation of AMPK/Akt/mTORsignalingand autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone. 2013;52(1):524–31.CrossRefGoogle Scholar
  60. 60.
    Ma Y, Qi M, An Y, Zhang L, Yang R, Doro DH, Liu W, Jin Y. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell. 2018;17(1):e12709.CrossRefGoogle Scholar
  61. 61.
    Li L, Li L, Zhang Z, Jiang Z. Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway. Acta Biochim Biophys Sin. 2015;47(5):362–7.CrossRefGoogle Scholar
  62. 62.
    Herberg S, Shi X, Johnson MH, Hamrick MW, Isales CM, Hill WD. Stromal cell-derived factor-1β mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS One. 2013;8(3):e58207.CrossRefGoogle Scholar
  63. 63.
    Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K, Hao C, Meng Y, Yu FH, Liu XQ, Shi YF. Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis. 2013;4(10):e844.CrossRefGoogle Scholar
  64. 64.
    Jung J, Choi JH, Lee Y, Park JW, Oh IH, Hwang SG, Kim KS, Kim GJ. Human placenta‐derived mesenchymal stem cells promote hepatic regeneration in CCl4‐injured rat liver model via increased autophagic mechanism. Stem Cells. 2013;31(8):1584–96.CrossRefGoogle Scholar
  65. 65.
    Gharibi B, Farzadi S, Ghuman M, Hughes FJ. Inhibition of Akt/mTOR attenuates age‐related changes in mesenchymal stem cells. Stem Cells. 2014;32(8):2256–66.CrossRefGoogle Scholar
  66. 66.
    Liu J, Hao H, Huang H, Tong C, Ti D, Dong L, Chen D, Zhao Y, Liu H, Han W, Fu X. Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy. Int J Low Extrem Wounds. 2015;14(1):63–72.CrossRefGoogle Scholar
  67. 67.
    Zhao K, Hao H, Liu J, Tong C, Cheng Y, Xie Z, Zang L, Mu Y, Han W. Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy. Cell Death Dis. 2015;6(9):e1885.CrossRefGoogle Scholar
  68. 68.
    Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829.CrossRefGoogle Scholar
  69. 69.
    He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67.CrossRefGoogle Scholar
  70. 70.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefGoogle Scholar
  71. 71.
    Wahlestedt M, Norddahl GL, Sten G, Ugale A, Frisk MA, Mattsson R, Deierborg T, Sigvardsson M, Bryder D. An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood. 2013;121(21):4257–64.CrossRefGoogle Scholar
  72. 72.
    Satoh Y, Yokota T, Sudo T, Kondo M, Lai A, Kincade PW, Kouro T, Iida R, Kokame K, Miyata T, Habuchi Y. The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity. 2013;38(6):1105–15.CrossRefGoogle Scholar
  73. 73.
    Wang J, Morita Y, Han B, Niemann S, Löffler B, Rudolph KL. Per2 induction limits lymphoid-biased haematopoietic stem cells and lymphopoiesis in the context of DNA damage and ageing. Nat Cell Biol. 2016;18(5):480–90.CrossRefGoogle Scholar
  74. 74.
    Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden DT, Chen D. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013;3(2):319–27.CrossRefGoogle Scholar
  75. 75.
    Lamming DW, Ye L, Sabatini DM, Baur JA. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Investig. 2013;123(3):980–9.CrossRefGoogle Scholar
  76. 76.
    Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2(98):ra75.CrossRefGoogle Scholar
  77. 77.
    Cheng CW, Adams GB, Perin L, Wei M, Zhou X, Lam BS, Da Sacco S, Mirisola M, Quinn DI, Dorff TB, Kopchick JJ. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell. 2014;14(6):810–23.CrossRefGoogle Scholar
  78. 78.
    Chen J, Astle CM, Harrison DE. Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol. 2003;31(11):1097–103.CrossRefGoogle Scholar
  79. 79.
    Florian MC, Nattamai KJ, Dörr K, Marka G, Überle B, Vas V, Eckl C, Andrä I, Schiemann M, Oostendorp RA, Scharffetter-Kochanek K. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature. 2013;503(7476):392–6.CrossRefGoogle Scholar
  80. 80.
    Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M, Scharffetter-Kochanek K, Zheng Y. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012;10(5):520–30.CrossRefGoogle Scholar
  81. 81.
    Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83.CrossRefGoogle Scholar
  82. 82.
    Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22(6):824–33.CrossRefGoogle Scholar
  83. 83.
    Singh S, Moirangthem RD, Vaidya A, Jalnapurkar S, Limaye L, Kale V. AKT signaling prevailing in mesenchymal stromal cells modulates the functionality of hematopoietic stem cells via intercellular communication. Stem Cells. 2016;34(9):2354–67.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rohan S. Kulkarni
    • 1
  • Manmohan Bajaj
    • 1
  • Vaijayanti P. Kale
    • 1
    • 2
  1. 1.Stem Cell LabNational Centre for Cell SciencePuneIndia
  2. 2.Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological SciencesSymbiosis International (Deemed University)PuneIndia

Personalised recommendations