Advertisement

Pulmonary Matrikines: Origin, Function, and Contribution to Fibrotic and Non-fibrotic Lung Disease

  • Gautam George
  • Janice Walker
  • Ross Summer
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

The extracellular matrix (ECM) of the lung is an acellular compartment that maintains organ structure and regulates the behavior of cells. Once thought to be a static structure, the lung ECM is now recognized to be highly dynamic, undergoing frequent degradation and resynthesis of its core components. However, excessive degradation of the ECM can have disastrous consequences, not only compromising organ structure but also leading to the release of potent bioactive substances called matrikines, which can impart deleterious effects on tissues. Although the field of lung matrikine biology is still in its infancy, a growing body of evidence supports the concept that these biological factors control a wide range of pathological processes, including many of those that contribute to the onset and progression of respiratory disorders like pulmonary fibrosis and chronic obstructive pulmonary disease. In this chapter, we will discuss the major matrikines identified in the mouse and human lung. We will also review the mechanisms leading to their production, discuss their putative role in the pathobiology of several respiratory disorders, and propose how targeting these molecules could be used in treating these diseases.

Keywords

Lung Matrikines Extracellular matrix Lung fibrosis 

References

  1. 1.
    Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.CrossRefGoogle Scholar
  2. 2.
    Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.CrossRefGoogle Scholar
  3. 3.
    Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801.CrossRefGoogle Scholar
  4. 4.
    Hubmacher D, Apte SS. The biology of the extracellular matrix: novel insights. Curr Opin Rheumatol. 2013;25:65–70.CrossRefGoogle Scholar
  5. 5.
    Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51.CrossRefGoogle Scholar
  6. 6.
    Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15:771–85.CrossRefGoogle Scholar
  7. 7.
    Maquart FX, Bellon G, Pasco S, Monboisse JC. Matrikines in the regulation of extracellular matrix degradation. Biochimie. 2005;87:353–60.CrossRefGoogle Scholar
  8. 8.
    Ricard-Blum S, Salza R. Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp Dermatol. 2014;23:457–63.CrossRefGoogle Scholar
  9. 9.
    Maquart FX, Pasco S, Ramont L, Hornebeck W, Monboisse JC. An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity. Implication in tumor invasion. Crit Rev Oncol Hematol. 2004;49:199–202.CrossRefGoogle Scholar
  10. 10.
    Chapman HA. Disorders of lung matrix remodeling. J Clin Invest. 2004;113:148–57.CrossRefGoogle Scholar
  11. 11.
    Hynes RO, Naba A. Overview of the matrisome – an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012;4:a004903.CrossRefGoogle Scholar
  12. 12.
    Gaggar A, Weathington N. Bioactive extracellular matrix fragments in lung health and disease. J Clin Invest. 2016;126:3176–84.CrossRefGoogle Scholar
  13. 13.
    Burgess JK, Weckmann M. Matrikines and the lungs. Pharmacol Ther. 2012;134:317–37.CrossRefGoogle Scholar
  14. 14.
    Postlethwaite AE, Seyer JM, Kang AH. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci U S A. 1978;75:871–5.CrossRefGoogle Scholar
  15. 15.
    Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 2008;20:495–501.CrossRefGoogle Scholar
  16. 16.
    Weinberger B, Hanna N, Laskin JD, Heck DE, Gardner CR, Gerecke DR, Laskin DL. Mechanisms mediating the biologic activity of synthetic proline, glycine, and hydroxyproline polypeptides in human neutrophils. Mediat Inflamm. 2005;2005:31–8.CrossRefGoogle Scholar
  17. 17.
    Junqueira LC, Montes GS. Biology of collagen-proteoglycan interaction. Arch Histol Jpn. 1983;46:589–629.CrossRefGoogle Scholar
  18. 18.
    Hunninghake GW, Davidson JM, Rennard S, Szapiel S, Gadek JE, Crystal RG. Elastin fragments attract macrophage precursors to diseased sites in pulmonary emphysema. Science. 1981;212:925–7.CrossRefGoogle Scholar
  19. 19.
    Senior RM, Griffin GL, Mecham RP. Chemotactic activity of elastin-derived peptides. J Clin Invest. 1980;66:859–62.CrossRefGoogle Scholar
  20. 20.
    Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol. 2002;21:25–9.CrossRefGoogle Scholar
  21. 21.
    Csoka AB, Stern R. Hypotheses on the evolution of hyaluronan: a highly ironic acid. Glycobiology. 2013;23:398–411.CrossRefGoogle Scholar
  22. 22.
    Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol. 2007;23:435–61.CrossRefGoogle Scholar
  23. 23.
    Aumailley M. The laminin family. Cell Adhes Migr. 2013;7:48–55.CrossRefGoogle Scholar
  24. 24.
    Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev. 2005;85:979–1000.CrossRefGoogle Scholar
  25. 25.
    Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS, Folkerts G, Nijkamp FP, Blalock JE. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med. 2006;12:317–23.CrossRefGoogle Scholar
  26. 26.
    Braber S, Overbeek SA, Koelink PJ, Henricks PA, Zaman GJ, Garssen J, Kraneveld AD, Folkerts G. CXCR2 antagonists block the N-Ac-PGP-induced neutrophil influx in the airways of mice, but not the production of the chemokine CXCL1. Eur J Pharmacol. 2011;668:443–9.CrossRefGoogle Scholar
  27. 27.
    Senior RM, Griffin GL, Mecham RP, Wrenn DS, Prasad KU, Urry DW. Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol. 1984;99:870–4.CrossRefGoogle Scholar
  28. 28.
    Meghraoui-Kheddar A, Pierre A, Sellami M, Audonnet S, Lemaire F, Le Naour R. Elastin receptor (S-gal) occupancy by elastin peptides modulates T-cell response during murine emphysema. Am J Physiol Lung Cell Mol Physiol. 2017;313:L534–47.CrossRefGoogle Scholar
  29. 29.
    Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177:1272–81.CrossRefGoogle Scholar
  30. 30.
    Fieber C, Baumann P, Vallon R, Termeer C, Simon JC, Hofmann M, Angel P, Herrlich P, Sleeman JP. Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J Cell Sci. 2004;117:359–67.CrossRefGoogle Scholar
  31. 31.
    Horejs CM, Serio A, Purvis A, Gormley AJ, Bertazzo S, Poliniewicz A, Wang AJ, DiMaggio P, Hohenester E, Stevens MM. Biologically-active laminin-111 fragment that modulates the epithelial-to-mesenchymal transition in embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111:5908–13.CrossRefGoogle Scholar
  32. 32.
    Mydel P, Shipley JM, Adair-Kirk TL, Kelley DG, Broekelmann TJ, Mecham RP, Senior RM. Neutrophil elastase cleaves laminin-332 (laminin-5) generating peptides that are chemotactic for neutrophils. J Biol Chem. 2008;283:9513–22.CrossRefGoogle Scholar
  33. 33.
    Sadowski T, Dietrich S, Koschinsky F, Ludwig A, Proksch E, Titz B, Sedlacek R. Matrix metalloproteinase 19 processes the laminin 5 gamma 2 chain and induces epithelial cell migration. Cell Mol Life Sci. 2005;62:870–80.CrossRefGoogle Scholar
  34. 34.
    Koshikawa N, Schenk S, Moeckel G, Sharabi A, Miyazaki K, Gardner H, Zent R, Quaranta V. Proteolytic processing of laminin-5 by MT1-MMP in tissues and its effects on epithelial cell morphology. FASEB J. 2004;18:364–6.CrossRefGoogle Scholar
  35. 35.
    Abdul Roda M, Fernstrand AM, Redegeld FA, Blalock JE, Gaggar A, Folkerts G. The matrikine PGP as a potential biomarker in COPD. Am J Physiol Lung Cell Mol Physiol. 2015;308:L1095–101.CrossRefGoogle Scholar
  36. 36.
    Pfister RR, Haddox JL, Blalock JE, Sommers CI, Coplan L, Villain M. Synthetic complementary peptides inhibit a neutrophil chemoattractant found in the alkali-injured cornea. Cornea. 2000;19:384–9.CrossRefGoogle Scholar
  37. 37.
    Snelgrove RJ. Targeting of a common receptor shared by CXCL8 and N-Ac-PGP as a therapeutic strategy to alleviate chronic neutrophilic lung diseases. Eur J Pharmacol. 2011;667:1–5.CrossRefGoogle Scholar
  38. 38.
    O’Reilly P, Jackson PL, Noerager B, Parker S, Dransfield M, Gaggar A, Blalock JE. N-alpha-PGP and PGP, potential biomarkers and therapeutic targets for COPD. Respir Res. 2009;10:38.CrossRefGoogle Scholar
  39. 39.
    Floquet N, Hery-Huynh S, Dauchez M, Derreumaux P, Tamburro AM, Alix AJ. Structural characterization of VGVAPG, an elastin-derived peptide. Biopolymers. 2004;76:266–80.CrossRefGoogle Scholar
  40. 40.
    Bisaccia F, Morelli MA, De Biasi M, Traniello S, Spisani S, Tamburro AM. Migration of monocytes in the presence of elastolytic fragments of elastin and in synthetic derivatives. Structure-activity relationships. Int J Pept Protein Res. 1994;44:332–41.CrossRefGoogle Scholar
  41. 41.
    Houghton AM. Matrix metalloproteinases in destructive lung disease. Matrix Biol. 2015;44–46:167–74.CrossRefGoogle Scholar
  42. 42.
    Akthar S, Patel DF, Beale RC, Peiro T, Xu X, Gaggar A, Jackson PL, Blalock JE, Lloyd CM, Snelgrove RJ. Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection. Nat Commun. 2015;6:8423.CrossRefGoogle Scholar
  43. 43.
    Raghu G. Idiopathic pulmonary fibrosis: guidelines for diagnosis and clinical management have advanced from consensus-based in 2000 to evidence-based in 2011. Eur Respir J. 2011;37:743–6.CrossRefGoogle Scholar
  44. 44.
    Kulkarni T, O’Reilly P, Antony VB, Gaggar A, Thannickal VJ. Matrix remodeling in pulmonary fibrosis and emphysema. Am J Respir Cell Mol Biol. 2016;54:751–60.CrossRefGoogle Scholar
  45. 45.
    Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53:585–600.CrossRefGoogle Scholar
  46. 46.
    Pardo A, Cabrera S, Maldonado M, Selman M. Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respir Res. 2016;17:23.CrossRefGoogle Scholar
  47. 47.
    Hahn CS, Scott DW, Xu X, Roda MA, Payne GA, Wells JM, Viera L, Winstead CJ, Bratcher P, Sparidans RW, Redegeld FA, Jackson PL, Folkerts G, Blalock JE, Patel RP, Gaggar A. The matrikine N-alpha-PGP couples extracellular matrix fragmentation to endothelial permeability. Sci Adv. 2015;1:e1500175.CrossRefGoogle Scholar
  48. 48.
    O’Reilly PJ, Ding Q, Akthar S, Cai G, Genschmer KR, Patel DF, Jackson PL, Viera L, Roda M, Locy ML, Bernstein EA, Lloyd CM, Bernstein KE, Snelgrove RJ, Blalock JE. Angiotensin-converting enzyme defines matrikine-regulated inflammation and fibrosis. JCI Insight. 2017;2:91923.CrossRefGoogle Scholar
  49. 49.
    Kristensen JH, Karsdal MA, Genovese F, Johnson S, Svensson B, Jacobsen S, Hagglund P, Leeming DJ. The role of extracellular matrix quality in pulmonary fibrosis. Respiration. 2014;88:487–99.CrossRefGoogle Scholar
  50. 50.
    Bjermer L, Lundgren R, Hallgren R. Hyaluronan and type III procollagen peptide concentrations in bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis. Thorax. 1989;44:126–31.CrossRefGoogle Scholar
  51. 51.
    Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech. 2014;7:193–203.CrossRefGoogle Scholar
  52. 52.
    Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006;28:523–32.CrossRefGoogle Scholar
  53. 53.
    Wells JM, O’Reilly PJ, Szul T, Sullivan DI, Handley G, Garrett C, McNicholas CM, Roda MA, Miller BE, Tal-Singer R, Gaggar A, Rennard SI, Jackson PL, Blalock JE. An aberrant leukotriene A4 hydrolase-proline-glycine-proline pathway in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;190:51–61.CrossRefGoogle Scholar
  54. 54.
    O’Reilly PJ, Jackson PL, Wells JM, Dransfield MT, Scanlon PD, Blalock JE. Sputum PGP is reduced by azithromycin treatment in patients with COPD and correlates with exacerbations. BMJ Open. 2013;3:e004140.CrossRefGoogle Scholar
  55. 55.
    Houghton AM, Quintero PA, Perkins DL, Kobayashi DK, Kelley DG, Marconcini LA, Mecham RP, Senior RM, Shapiro SD. Elastin fragments drive disease progression in a murine model of emphysema. J Clin Invest. 2006;116:753–9.CrossRefGoogle Scholar
  56. 56.
    Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16:45–56.CrossRefGoogle Scholar
  57. 57.
    Gaggar A, Jackson PL, Noerager BD, O’Reilly PJ, McQuaid DB, Rowe SM, Clancy JP, Blalock JE. A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J Immunol. 2008;180:5662–9.CrossRefGoogle Scholar
  58. 58.
    Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377:562–72.CrossRefGoogle Scholar
  59. 59.
    Carrasco Loza R, Villamizar Rodriguez G, Medel Fernandez N. Ventilator-induced lung injury (VILI) in acute respiratory distress syndrome (ARDS): volutrauma and molecular effects. Open Respir Med J. 2015;9:112–9.CrossRefGoogle Scholar
  60. 60.
    Lengas A. Identifying patients with ARDS: may BAL-morphology be helpful? Intensive Care Med. 1998;24:645–6.CrossRefGoogle Scholar
  61. 61.
    Wells JM, Gaggar A, Blalock JE. MMP generated matrikines. Matrix Biol. 2015;44–46:122–9.CrossRefGoogle Scholar
  62. 62.
    Davey A, McAuley DF, O’Kane CM. Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. Eur Respir J. 2011;38:959–70.CrossRefGoogle Scholar
  63. 63.
    Fligiel SE, Standiford T, Fligiel HM, Tashkin D, Strieter RM, Warner RL, Johnson KJ, Varani J. Matrix metalloproteinases and matrix metalloproteinase inhibitors in acute lung injury. Hum Pathol. 2006;37:422–30.CrossRefGoogle Scholar
  64. 64.
    Hergrueter AH, Nguyen K, Owen CA. Matrix metalloproteinases: all the RAGE in the acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2011;300:L512–5.CrossRefGoogle Scholar
  65. 65.
    Lanchou J, Corbel M, Tanguy M, Germain N, Boichot E, Theret N, Clement B, Lagente V, Malledant Y. Imbalance between matrix metalloproteinases (MMP-9 and MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in acute respiratory distress syndrome patients. Crit Care Med. 2003;31:536–42.CrossRefGoogle Scholar
  66. 66.
    Kong MY, Li Y, Oster R, Gaggar A, Clancy JP. Early elevation of matrix metalloproteinase-8 and -9 in pediatric ARDS is associated with an increased risk of prolonged mechanical ventilation. PLoS One. 2011;6:e22596.CrossRefGoogle Scholar
  67. 67.
    Monboisse JC, Senechal K, Thevenard J, Ramont L, Brassart-Pasco S, Maquart FX. Matrikines: a new anticancer therapeutic strategy. Biol Aujourdhui. 2012;206:111–23.CrossRefGoogle Scholar
  68. 68.
    Aldag C, Nogueira Teixeira D, Leventhal PS. Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature. Clin Cosmet Investig Dermatol. 2016;9:411–9.CrossRefGoogle Scholar
  69. 69.
    Pfister RR, Sommers CI. L-arginine-threonine-arginine (RTR) tetramer peptide inhibits ulceration in the alkali-injured rabbit cornea. Cornea. 2006;25:1187–92.CrossRefGoogle Scholar
  70. 70.
    Chapman RW, Phillips JE, Hipkin RW, Curran AK, Lundell D, Fine JS. CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol Ther. 2009;121:55–68.CrossRefGoogle Scholar
  71. 71.
    Manicone AM. Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert Rev Clin Immunol. 2009;5:63–75.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Translational MedicineThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Division of PulmonaryAllergy and Critical Care Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Department of PathologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations