Advertisement

Liver Fibrosis: Current Approaches and Future Directions for Diagnosis and Treatment

  • Jennifer Y. Chen
  • Dhruv Thakar
  • Tammy T. Chang
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Liver fibrosis, known as cirrhosis in advanced stages, is a dynamic process in which aberrant extracellular matrix accumulates in the liver parenchyma in response to chronic injury. Recent data has shown that liver fibrosis, even in advanced stages, may regress with the cessation of liver injury. In the past two decades, there has been remarkable progress in the understanding of hepatic fibrosis and the identification of therapeutic targets. Here, we review the epidemiology, etiology, pathophysiology, current therapeutic options, and future research directions for the management of cirrhosis. We discuss the molecular mechanisms involved in hepatic fibrogenesis, the role of liver matrix stiffening in disease diagnosis and pathogenesis, and the association between liver fibrosis and tumorigenesis.

Keywords

Liver fibrosis Nonalcoholic fatty liver disease Extracellular matrix Matrix stiffness Elastography Hepatic stellate cells Hepatocellular carcinoma Liver metastases 

References

  1. 1.
    Mortality GBD, Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–71.  https://doi.org/10.1016/S0140-6736(14)61682-2.CrossRefGoogle Scholar
  2. 2.
    Scaglione S, Kliethermes S, Cao G, Shoham D, Durazo R, Luke A, et al. The epidemiology of cirrhosis in the United States: a population-based study. J Clin Gastroenterol. 2015;49(8):690–6.  https://doi.org/10.1097/MCG.0000000000000208.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hoyert DL, Xu J. Deaths: preliminary data for 2011. Natl Vital Stat Rep. 2012;61(6):1–51.PubMedGoogle Scholar
  4. 4.
    Asrani SK, Larson JJ, Yawn B, Therneau TM, Kim WR. Underestimation of liver-related mortality in the United States. Gastroenterology. 2013;145(2):375–82 e1-2.  https://doi.org/10.1053/j.gastro.2013.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    El Khoury AC, Klimack WK, Wallace C, Razavi H. Economic burden of hepatitis C-associated diseases in the United States. J Viral Hepat. 2012;19(3):153–60.  https://doi.org/10.1111/j.1365-2893.2011.01563.x.CrossRefPubMedGoogle Scholar
  6. 6.
    D’Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol. 2006;44(1):217–31.  https://doi.org/10.1016/j.jhep.2005.10.013.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fleming KM, Aithal GP, Card TR, West J. All-cause mortality in people with cirrhosis compared with the general population: a population-based cohort study. Liver Int: Off J Int Assoc Stud Liver. 2012;32(1):79–84.  https://doi.org/10.1111/j.1478-3231.2011.02517.x.CrossRefGoogle Scholar
  8. 8.
    Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148(3):547–55.  https://doi.org/10.1053/j.gastro.2014.11.039.CrossRefPubMedGoogle Scholar
  9. 9.
    Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123–33.  https://doi.org/10.1002/hep.29466.CrossRefPubMedGoogle Scholar
  10. 10.
    Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10(11):686–90.  https://doi.org/10.1038/nrgastro.2013.171.CrossRefPubMedGoogle Scholar
  11. 11.
    Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10(6):330–44.  https://doi.org/10.1038/nrgastro.2013.41.CrossRefPubMedGoogle Scholar
  12. 12.
    Agopian VG, Kaldas FM, Hong JC, Whittaker M, Holt C, Rana A, et al. Liver transplantation for nonalcoholic steatohepatitis: the new epidemic. Ann Surg. 2012;256(4):624–33.  https://doi.org/10.1097/SLA.0b013e31826b4b7e.CrossRefPubMedGoogle Scholar
  13. 13.
    Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141(4):1249–53.  https://doi.org/10.1053/j.gastro.2011.06.061.CrossRefPubMedGoogle Scholar
  14. 14.
    Charlton MR, Kondo M, Roberts SK, Steers JL, Krom RA, Wiesner RH. Liver transplantation for cryptogenic cirrhosis. Liver Transpl Surg. 1997;3(4):359–64.CrossRefGoogle Scholar
  15. 15.
    Gougelet A, Colnot S. MicroRNAs linking cancer and inflammation: focus on liver cancer. In: Babashah S, editor. MicroRNAs: key regulators of oncogenesis. Cham: Springer International Publishing; 2014. p. 183–208.CrossRefGoogle Scholar
  16. 16.
    Baloch Z, Klapper J, Buchanan L, Schwartz M, Amenta PS. Ontogenesis of the murine hepatic extracellular matrix: an immunohistochemical study. Differentiation. 1992;51:209–18.  https://doi.org/10.1111/j.1432-0436.1992.tb00698.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. Am Soc Biochem Mol Biol. 2000;275:2247–50.Google Scholar
  18. 18.
    Martinez-Hernandez A, Amenta PS. The extracellular matrix in hepatic regeneration. FASEB J. 1995;9(14):1401–10.CrossRefGoogle Scholar
  19. 19.
    Griffiths MR, Keir S, Burt AD. Basement membrane proteins in the space of Disse: a reappraisal. J Clin Pathol. 1991;44(8):646–8.  https://doi.org/10.1136/jcp.44.8.646.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hahn E, Wick G, Pencev D, Timpl R. Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin, and fibronectin. Gut. 1980;21(1):63–71.  https://doi.org/10.1136/gut.21.1.63.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bianchi FB, Biagini G, Ballardini G, Cenacchi G, Faccani A, Pisi E, et al. Basement membrane production by hepatocytes in chronic liver disease. Hepatology. 1984;4(6):1167–72.CrossRefGoogle Scholar
  22. 22.
    Matsumoto S, Yamamoto K, Nagano T, Okamoto R, Ibuki N, Tagashira M, et al. Immunohistochemical study on phenotypical changes of hepatocytes in liver disease with reference to extracellular matrix composition. Liver. 1999;19(1):32–8.  https://doi.org/10.1111/j.1478-3231.1999.tb00006.x.CrossRefPubMedGoogle Scholar
  23. 23.
    Schaffner F, Poper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963;44(3):239–42.  https://doi.org/10.1001/jama.1963.03700140159106.CrossRefPubMedGoogle Scholar
  24. 24.
    Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol. 1974;77(2):314–46.PubMedGoogle Scholar
  25. 25.
    Muragaki Y, Timmons S, Griffith CM, Oh SP, Fadel B, Quertermous T, et al. Mouse Col18a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones. Proc Natl Acad Sci U S A. 1995;92(19):8763–7.  https://doi.org/10.1073/pnas.92.19.8763.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Musso O, Rehn M, Saarela J, Théret N, Liétard J, Hintikka E, et al. Collagen XVIII is localized in sinusoids and basement membrane zones and expressed by hepatocytes and activated stellate cells in fibrotic human liver. Hepatology. 1998;28(1):98–107.  https://doi.org/10.1002/hep.510280115.CrossRefPubMedGoogle Scholar
  27. 27.
    Rehn M, Pihlajaniemi T. Alpha 1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen. Proc Natl Acad Sci U S A. 1994;91(10):4234–8.CrossRefGoogle Scholar
  28. 28.
    Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta Mol basis Dis. 2013;1832(7):876–83.  https://doi.org/10.1016/j.bbadis.2012.11.002.CrossRefGoogle Scholar
  29. 29.
    Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JMB, et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2015 (287);  https://doi.org/10.1152/ajpgi.00447.2014.CrossRefGoogle Scholar
  30. 30.
    Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis. 2001;21(3):351–72.  https://doi.org/10.1055/s-2001-17556.CrossRefPubMedGoogle Scholar
  31. 31.
    Friedman SL. The cellular basis of hepatic strategies. N Engl J Med. 1993;328(25):1828–35.CrossRefGoogle Scholar
  32. 32.
    Gallai M, Kovalszky I, Neubauer K, Armbrust T. Expression of extracellular matrix proteoglycans perlecan and decorin. Am J Physiol Gastrointest Liver Physiol. 2007;148(5):1–9.Google Scholar
  33. 33.
    Roskams T, Rosenbaum J, De Vos R, David G, Desmet V. Heparan sulfate proteoglycan expression in chronic cholestatic human liver diseases. Hepatology. 1996;24(3):524–32.  https://doi.org/10.1053/jhep.1996.v24.pm0008781318.CrossRefPubMedGoogle Scholar
  34. 34.
    Tátrai P, Dudás J, Batmunkh E, Máthé M, Zalatnai A, Schaff Z, et al. Agrin, a novel basement membrane component in human and rat liver, accumulates in cirrhosis and hepatocellular carcinoma. Lab Inves: J Tech Methods Pathol. 2006;86(11):1149–60.  https://doi.org/10.1038/labinvest.3700475.CrossRefGoogle Scholar
  35. 35.
    McGuire RF, Bissell DM, Boyles J, Roll FJ. Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology. 1992;15(6):989–97.  https://doi.org/10.1002/hep.1840150603.CrossRefPubMedGoogle Scholar
  36. 36.
    Qureshi M, Forouhar F. Cirrhosis: gastrointestinal features. In: Wu GY, editor. Atlas of dermatological manifestations of gastrointestinal disease. New York: Springer Science and Business Media; 2013. p. 177–8.CrossRefGoogle Scholar
  37. 37.
    Clément B, Rescan PY, Baffet G, Loréal O, Lehry D, Campion JP, et al. Hepatocytes may produce laminin in fibrotic liver and in primary culture. Hepatology (Baltimore). 1988;8(4):794–803.CrossRefGoogle Scholar
  38. 38.
    Maher JJ, Friedman SL, Roll FJ, Bissell DM. Immunolocalization of laminin in normal rat liver and biosynthesis of laminin by hepatic lipocytes in primary culture. Gastroenterology. 1988;94(4):1053–62.CrossRefGoogle Scholar
  39. 39.
    Martinez-Hernandez A, Martinez J. The role of capillarization in hepatic failure: studies in carbon tetrachloride-induced cirrhosis. Hepatology. 1991;14:864–74.CrossRefGoogle Scholar
  40. 40.
    Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.  https://doi.org/10.1002/hep.20701.CrossRefPubMedGoogle Scholar
  41. 41.
    Bedossa P, Carrat F. Liver biopsy: the best, not the gold standard. J Hepatol. 2009;50(1):1–3.  https://doi.org/10.1016/j.jhep.2008.10.014.CrossRefPubMedGoogle Scholar
  42. 42.
    Mendes LC, Stucchi RS, Vigani AG. Diagnosis and staging of fibrosis in patients with chronic hepatitis C: comparison and critical overview of current strategies. Hepatic Med: Evid Res. 2018;10:13–22.  https://doi.org/10.2147/HMER.S125234.CrossRefGoogle Scholar
  43. 43.
    Udell JA, Wang CS, Tinmouth J, FitzGerald JM, Ayas NT, Simel DL, et al. Does this patient with liver disease have cirrhosis? JAMA. 2012;307(8):832–42.  https://doi.org/10.1001/jama.2012.186.CrossRefPubMedGoogle Scholar
  44. 44.
    Poynard T, Morra R, Ingiliz P, Imbert-Bismut F, Thabut D, Messous D, et al. Biomarkers of liver fibrosis. Adv Clin Chem. 2008;46:131–60.CrossRefGoogle Scholar
  45. 45.
    Parkes J, Guha IN, Roderick P, Harris S, Cross R, Manos MM, et al. Enhanced Liver Fibrosis (ELF) test accurately identifies liver fibrosis in patients with chronic hepatitis C. J Viral Hepat. 2011;18(1):23–31.  https://doi.org/10.1111/j.1365-2893.2009.01263.x.CrossRefPubMedGoogle Scholar
  46. 46.
    Lin ZH, Xin YN, Dong QJ, Wang Q, Jiang XJ, Zhan SH, et al. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. Hepatology. 2011;53(3):726–36.  https://doi.org/10.1002/hep.24105.CrossRefPubMedGoogle Scholar
  47. 47.
    Leroy V, Hilleret MN, Sturm N, Trocme C, Renversez JC, Faure P, et al. Prospective comparison of six non-invasive scores for the diagnosis of liver fibrosis in chronic hepatitis C. J Hepatol. 2007;46(5):775–82.  https://doi.org/10.1016/j.jhep.2006.12.013.CrossRefPubMedGoogle Scholar
  48. 48.
    Shaheen AA, Wan AF, Myers RP. FibroTest and FibroScan for the prediction of hepatitis C-related fibrosis: a systematic review of diagnostic test accuracy. Am J Gastroenterol. 2007;102(11):2589–600.  https://doi.org/10.1111/j.1572-0241.2007.01466.x.CrossRefPubMedGoogle Scholar
  49. 49.
    Simonovsky V. The diagnosis of cirrhosis by high resolution ultrasound of the liver surface. Br J Radiol. 1999;72(853):29–34.  https://doi.org/10.1259/bjr.72.853.10341686.CrossRefPubMedGoogle Scholar
  50. 50.
    Reeder SB, Sirlin CB. Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am. 2010;18(3):337–57, ix.  https://doi.org/10.1016/j.mric.2010.08.013.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ernst O, Sergent G, Bonvarlet P, Canva-Delcambre V, Paris JC, L’Hermine C. Hepatic iron overload: diagnosis and quantification with MR imaging. AJR Am J Roentgenol. 1997;168(5):1205–8.  https://doi.org/10.2214/ajr.168.5.9129412.CrossRefPubMedGoogle Scholar
  52. 52.
    Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology. 2017;65(1):310–35.  https://doi.org/10.1002/hep.28906.CrossRefPubMedGoogle Scholar
  53. 53.
    Augustin S, Millan L, Gonzalez A, Martell M, Gelabert A, Segarra A, et al. Detection of early portal hypertension with routine data and liver stiffness in patients with asymptomatic liver disease: a prospective study. J Hepatol. 2014;60(3):561–9.  https://doi.org/10.1016/j.jhep.2013.10.027.CrossRefPubMedGoogle Scholar
  54. 54.
    Park CC, Nguyen P, Hernandez C, Bettencourt R, Ramirez K, Fortney L, et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology. 2017;152(3):598–607 e2.  https://doi.org/10.1053/j.gastro.2016.10.026.CrossRefPubMedGoogle Scholar
  55. 55.
    Ferraioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C, et al. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology. 2012;56(6):2125–33.  https://doi.org/10.1002/hep.25936.CrossRefPubMedGoogle Scholar
  56. 56.
    Venkatesh SK, Ehman RL. Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am. 2014;22(3):433–46.  https://doi.org/10.1016/j.mric.2014.05.001.CrossRefPubMedGoogle Scholar
  57. 57.
    Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol. 2007;5(10):1207–13 e2.  https://doi.org/10.1016/j.cgh.2007.06.012.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Georges PC, Hui JJ, Gombos Z, McCormick ME, Wang AY, Uemura M, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1147–54.  https://doi.org/10.1152/ajpgi.00032.2007.CrossRefPubMedGoogle Scholar
  59. 59.
    Yeh WC, Li PC, Jeng YM, Hsu HC, Kuo PL, Li ML, et al. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med Biol. 2002;28(4):467–74.CrossRefGoogle Scholar
  60. 60.
    Desai SS, Tung JC, Zhou VX, Grenert JP, Malato Y, Rezvani M, et al. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology. 2016;64(1):261–75.  https://doi.org/10.1002/hep.28450.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Tapper EB, Loomba R. Noninvasive imaging biomarker assessment of liver fibrosis by elastography in NAFLD. Nat Rev Gastroenterol Hepatol. 2018;  https://doi.org/10.1038/nrgastro.2018.10.CrossRefGoogle Scholar
  62. 62.
    Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol. 2007;46(5):927–34.  https://doi.org/10.1016/j.jhep.2007.02.006.CrossRefPubMedGoogle Scholar
  63. 63.
    Merkel C, Bolognesi M, Sacerdoti D, Bombonato G, Bellini B, Bighin R, et al. The hemodynamic response to medical treatment of portal hypertension as a predictor of clinical effectiveness in the primary prophylaxis of variceal bleeding in cirrhosis. Hepatology. 2000;32(5):930–4.  https://doi.org/10.1053/jhep.2000.19322.CrossRefPubMedGoogle Scholar
  64. 64.
    Kovalak M, Lake J, Mattek N, Eisen G, Lieberman D, Zaman A. Endoscopic screening for varices in cirrhotic patients: data from a national endoscopic database. Gastrointest Endosc. 2007;65(1):82–8.  https://doi.org/10.1016/j.gie.2006.08.023.CrossRefPubMedGoogle Scholar
  65. 65.
    Groszmann RJ, Garcia-Tsao G, Bosch J, Grace ND, Burroughs AK, Planas R, et al. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl J Med. 2005;353(21):2254–61.  https://doi.org/10.1056/NEJMoa044456.CrossRefPubMedGoogle Scholar
  66. 66.
    Merli M, Nicolini G, Angeloni S, Rinaldi V, De Santis A, Merkel C, et al. Incidence and natural history of small esophageal varices in cirrhotic patients. J Hepatol. 2003;38(3):266–72.CrossRefGoogle Scholar
  67. 67.
    Amitrano L, Guardascione MA, Manguso F, Bennato R, Bove A, DeNucci C, et al. The effectiveness of current acute variceal bleed treatments in unselected cirrhotic patients: refining short-term prognosis and risk factors. Am J Gastroenterol. 2012;107(12):1872–8.  https://doi.org/10.1038/ajg.2012.313.CrossRefPubMedGoogle Scholar
  68. 68.
    Ding NS, Nguyen T, Iser DM, Hong T, Flanagan E, Wong A, et al. Liver stiffness plus platelet count can be used to exclude high-risk oesophageal varices. Liver Int. 2016;36(2):240–5.  https://doi.org/10.1111/liv.12916.CrossRefPubMedGoogle Scholar
  69. 69.
    Gluud LL, Krag A. Banding ligation versus beta-blockers for primary prevention in oesophageal varices in adults. Cochrane Database Syst Rev. 2012;8:CD004544.  https://doi.org/10.1002/14651858.CD004544.pub2.CrossRefGoogle Scholar
  70. 70.
    Li L, Yu C, Li Y. Endoscopic band ligation versus pharmacological therapy for variceal bleeding in cirrhosis: a meta-analysis. Can J Gastroenterol. 2011;25(3):147–55.CrossRefGoogle Scholar
  71. 71.
    Garcia-Pagan JC, Caca K, Bureau C, Laleman W, Appenrodt B, Luca A, et al. Early use of TIPS in patients with cirrhosis and variceal bleeding. N Engl J Med. 2010;362(25):2370–9.  https://doi.org/10.1056/NEJMoa0910102.CrossRefPubMedGoogle Scholar
  72. 72.
    Bernard B, Grange JD, Khac EN, Amiot X, Opolon P, Poynard T. Antibiotic prophylaxis for the prevention of bacterial infections in cirrhotic patients with gastrointestinal bleeding: a meta-analysis. Hepatology. 1999;29(6):1655–61.  https://doi.org/10.1002/hep.510290608.CrossRefPubMedGoogle Scholar
  73. 73.
    Villanueva C, Colomo A, Bosch A, Concepcion M, Hernandez-Gea V, Aracil C, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013;368(1):11–21.  https://doi.org/10.1056/NEJMoa1211801.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Puente A, Hernandez-Gea V, Graupera I, Roque M, Colomo A, Poca M, et al. Drugs plus ligation to prevent rebleeding in cirrhosis: an updated systematic review. Liver Int: Off J Int Assoc Stud Liver. 2014;34(6):823–33.  https://doi.org/10.1111/liv.12452.CrossRefGoogle Scholar
  75. 75.
    Singh V, Dhungana SP, Singh B, Vijayverghia R, Nain CK, Sharma N, et al. Midodrine in patients with cirrhosis and refractory or recurrent ascites: a randomized pilot study. J Hepatol. 2012;56(2):348–54.  https://doi.org/10.1016/j.jhep.2011.04.027.CrossRefPubMedGoogle Scholar
  76. 76.
    Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341(6):403–9.  https://doi.org/10.1056/NEJM199908053410603.CrossRefPubMedGoogle Scholar
  77. 77.
    Jepsen P, Ott P, Andersen PK, Sorensen HT, Vilstrup H. Clinical course of alcoholic liver cirrhosis: a Danish population-based cohort study. Hepatology. 2010;51(5):1675–82.  https://doi.org/10.1002/hep.23500.CrossRefPubMedGoogle Scholar
  78. 78.
    Laleman W, Simon-Talero M, Maleux G, Perez M, Ameloot K, Soriano G, et al. Embolization of large spontaneous portosystemic shunts for refractory hepatic encephalopathy: a multicenter survey on safety and efficacy. Hepatology. 2013;57(6):2448–57.  https://doi.org/10.1002/hep.26314.CrossRefPubMedGoogle Scholar
  79. 79.
    Sharma BC, Sharma P, Agrawal A, Sarin SK. Secondary prophylaxis of hepatic encephalopathy: an open-label randomized controlled trial of lactulose versus placebo. Gastroenterology. 2009;137(3):885–91, 91 e1.  https://doi.org/10.1053/j.gastro.2009.05.056.CrossRefPubMedGoogle Scholar
  80. 80.
    Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, Leevy CB, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362(12):1071–81.  https://doi.org/10.1056/NEJMoa0907893.CrossRefPubMedGoogle Scholar
  81. 81.
    Ramachandran P, Iredale JP. Reversibility of liver fibrosis. Ann Hepatol. 2009;8(4):283–91.PubMedGoogle Scholar
  82. 82.
    Marcellin P, Gane E, Buti M, Afdhal N, Sievert W, Jacobson IM, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet. 2013;381(9865):468–75.  https://doi.org/10.1016/S0140-6736(12)61425-1.CrossRefPubMedGoogle Scholar
  83. 83.
    Chang TT, Liaw YF, Wu SS, Schiff E, Han KH, Lai CL, et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology. 2010;52(3):886–93.  https://doi.org/10.1002/hep.23785.CrossRefPubMedGoogle Scholar
  84. 84.
    D’Ambrosio R, Aghemo A, Rumi MG, Ronchi G, Donato MF, Paradis V, et al. A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology. 2012;56(2):532–43.  https://doi.org/10.1002/hep.25606.CrossRefPubMedGoogle Scholar
  85. 85.
    Mazzaferro V, Regalia E, Montalto F, Pulvirenti A, Brunetto MR, Bonino F, et al. Risk of HBV reinfection after liver transplantation in HBsAg-positive cirrhosis. Primary hepatocellular carcinoma is not a predictor for HBV recurrence. The European Cooperative Study Group on Liver Cancer and Transplantation. Liver. 1996;16(2):117–22.CrossRefGoogle Scholar
  86. 86.
    Yao FY, Ferrell L, Bass NM, Watson JJ, Bacchetti P, Venook A, et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology. 2001;33(6):1394–403.  https://doi.org/10.1053/jhep.2001.24563.CrossRefPubMedGoogle Scholar
  87. 87.
    OPTN. OPTN/SRTR annual data report 2015. Am J Transplant. 2017;17(S1):1–564.Google Scholar
  88. 88.
    Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72.  https://doi.org/10.1152/physrev.00013.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem. 1987;161(1):207–18.CrossRefGoogle Scholar
  90. 90.
    Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823.  https://doi.org/10.1038/ncomms3823.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Lemoinne S, Cadoret A, El Mourabit H, Thabut D, Housset C. Origins and functions of liver myofibroblasts. Biochim Biophys Acta. 2013;1832(7):948–54.  https://doi.org/10.1016/j.bbadis.2013.02.019.CrossRefPubMedGoogle Scholar
  92. 92.
    Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397–411.  https://doi.org/10.1038/nrgastro.2017.38.CrossRefPubMedGoogle Scholar
  93. 93.
    Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology. 2002;123(4):1323–30.CrossRefGoogle Scholar
  94. 94.
    Mehal W, Imaeda A. Cell death and fibrogenesis. Semin Liver Dis. 2010;30(3):226–31.  https://doi.org/10.1055/s-0030-1255352.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Greenhalgh SN, Conroy KP, Henderson NC. Cre-ativity in the liver: transgenic approaches to targeting hepatic nonparenchymal cells. Hepatology. 2015;61(6):2091–9.  https://doi.org/10.1002/hep.27606.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem. 1999;274(38):27161–7.CrossRefGoogle Scholar
  97. 97.
    Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem. 1999;274(52):37413–20.CrossRefGoogle Scholar
  98. 98.
    Traber PG, Chou H, Zomer E, Hong F, Klyosov A, Fiel MI, et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 2013;8(10):e75361.  https://doi.org/10.1371/journal.pone.0075361.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med. 2013;19(12):1617–24.  https://doi.org/10.1038/nm.3282.CrossRefPubMedGoogle Scholar
  100. 100.
    Seki E, De Minicis S, Gwak GY, Kluwe J, Inokuchi S, Bursill CA, et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest. 2009;119(7):1858–70.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50(1):185–97.  https://doi.org/10.1002/hep.22952.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Berres ML, Koenen RR, Rueland A, Zaldivar MM, Heinrichs D, Sahin H, et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J Clin Invest. 2010;120(11):4129–40.  https://doi.org/10.1172/JCI41732.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Mitchell C, Couton D, Couty JP, Anson M, Crain AM, Bizet V, et al. Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am J Pathol. 2009;174(5):1766–75.  https://doi.org/10.2353/ajpath.2009.080632.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Teixeira-Clerc F, Julien B, Grenard P, Tran Van Nhieu J, Deveaux V, Li L, et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med. 2006;12(6):671–6.  https://doi.org/10.1038/nm1421.CrossRefPubMedGoogle Scholar
  105. 105.
    Julien B, Grenard P, Teixeira-Clerc F, Van Nhieu JT, Li L, Karsak M, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology. 2005;128(3):742–55.CrossRefGoogle Scholar
  106. 106.
    Granzow M, Schierwagen R, Klein S, Kowallick B, Huss S, Linhart M, et al. Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology. 2014;60(1):334–48.  https://doi.org/10.1002/hep.27117.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13(11):1324–32.  https://doi.org/10.1038/nm1663.CrossRefPubMedGoogle Scholar
  108. 108.
    Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology. 2013;57(2):577–89.  https://doi.org/10.1002/hep.26081.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Kong B, Luyendyk JP, Tawfik O, Guo GL. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther. 2009;328(1):116–22.  https://doi.org/10.1124/jpet.108.144600.CrossRefPubMedGoogle Scholar
  110. 110.
    Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65.  https://doi.org/10.1016/S0140-6736(14)61933-4.CrossRefPubMedGoogle Scholar
  111. 111.
    Hazra S, Xiong S, Wang J, Rippe RA, Krishna V, Chatterjee K, et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem. 2004;279(12):11392–401.  https://doi.org/10.1074/jbc.M310284200.CrossRefPubMedGoogle Scholar
  112. 112.
    Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150(5):1147–59 e5.  https://doi.org/10.1053/j.gastro.2016.01.038.CrossRefPubMedGoogle Scholar
  113. 113.
    Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153(3):601–13.  https://doi.org/10.1016/j.cell.2013.03.028.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Michelotti GA, Xie G, Swiderska M, Choi SS, Karaca G, Kruger L, et al. Smoothened is a master regulator of adult liver repair. J Clin Invest. 2013;123(6):2380–94.  https://doi.org/10.1172/JCI66904.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Martin K, Pritchett J, Llewellyn J, Mullan AF, Athwal VS, Dobie R, et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun. 2016;7:12502.  https://doi.org/10.1038/ncomms12502.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Mannaerts I, Leite SB, Verhulst S, Claerhout S, Eysackers N, Thoen LF, et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol. 2015;63(3):679–88.  https://doi.org/10.1016/j.jhep.2015.04.011.CrossRefPubMedGoogle Scholar
  117. 117.
    Zhang K, Chang Y, Shi Z, Han X, Han Y, Yao Q, et al. Omega-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation. Sci Rep. 2016;6:30029.  https://doi.org/10.1038/srep30029.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Swiderska-Syn M, Xie G, Michelotti GA, Jewell ML, Premont RT, Syn WK, et al. Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology. 2016;64(1):232–44.  https://doi.org/10.1002/hep.28542.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Zhang Z, Zha Y, Hu W, Huang Z, Gao Z, Zang Y, et al. The autoregulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (MiR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J Biol Chem. 2013;288(52):37082–93.  https://doi.org/10.1074/jbc.M113.517953.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Ogawa T, Enomoto M, Fujii H, Sekiya Y, Yoshizato K, Ikeda K, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut. 2012;61(11):1600–9.  https://doi.org/10.1136/gutjnl-2011-300717.CrossRefPubMedGoogle Scholar
  121. 121.
    Tian W, Fan Z, Li J, Hao C, Li M, Xu H, et al. Myocardin-related transcription factor A (MRTF-A) plays an essential role in hepatic stellate cell activation by epigenetically modulating TGF-beta signaling. Int J Biochem Cell Biol. 2016;71:35–43.  https://doi.org/10.1016/j.biocel.2015.12.005.CrossRefPubMedGoogle Scholar
  122. 122.
    Mann J, Chu DC, Maxwell A, Oakley F, Zhu NL, Tsukamoto H, et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138(2):705–14, 14 e1–4.  https://doi.org/10.1053/j.gastro.2009.10.002.CrossRefPubMedGoogle Scholar
  123. 123.
    Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14(3):181–94.  https://doi.org/10.1038/nri3623.CrossRefPubMedGoogle Scholar
  124. 124.
    Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134(4):657–67.  https://doi.org/10.1016/j.cell.2008.06.049.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A. 2012;109(24):9448–53.  https://doi.org/10.1073/pnas.1201840109.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC, et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology. 2012;143(4):1073–83 e22.  https://doi.org/10.1053/j.gastro.2012.06.036.CrossRefPubMedGoogle Scholar
  127. 127.
    Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.  https://doi.org/10.1038/nrc.2016.73.CrossRefPubMedGoogle Scholar
  128. 128.
    Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213(2):286–300.  https://doi.org/10.1002/jcp.21172.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Kang N, Gores GJ, Shah VH. Hepatic stellate cells: partners in crime for liver metastases? Hepatology. 2011;54(2):707–13.  https://doi.org/10.1002/hep.24384.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology. 2012;56(2):769–75.  https://doi.org/10.1002/hep.25670.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Shariff MI, Cox IJ, Gomaa AI, Khan SA, Gedroyc W, Taylor-Robinson SD. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev Gastroenterol Hepatol. 2009;3(4):353–67.  https://doi.org/10.1586/egh.09.35.CrossRefPubMedGoogle Scholar
  132. 132.
    Petrick JL, Kelly SP, Altekruse SF, McGlynn KA, Rosenberg PS. Future of hepatocellular carcinoma incidence in the United States forecast through 2030. J Clin Oncol. 2016;  https://doi.org/10.1200/jco.2015.64.7412.CrossRefGoogle Scholar
  133. 133.
    Seitz HK, Stickel F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem. 2006;387(4):349–60.  https://doi.org/10.1515/BC.2006.047.CrossRefPubMedGoogle Scholar
  134. 134.
    Roskams T, Kojiro M. Pathology of early hepatocellular carcinoma: conventional and molecular diagnosis. Semin Liver Dis. 2010;30:17–25.CrossRefGoogle Scholar
  135. 135.
    Nault JC, Calderaro J, Di Tommaso L, Balabaud C, Zafrani ES, Bioulac-Sage P, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60(6):1983–92.  https://doi.org/10.1002/hep.27372.CrossRefPubMedGoogle Scholar
  136. 136.
    Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149(5):1226–39.  https://doi.org/10.1053/j.gastro.2015.05.061.CrossRefPubMedGoogle Scholar
  137. 137.
    Crissien AM, Frenette C. Current management of hepatocellular carcinoma. Gastroenterol Hepatol. 2014;10(3):153–61.Google Scholar
  138. 138.
    Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127(5 Suppl 1):S35–50.CrossRefGoogle Scholar
  139. 139.
    Li Z, Dranoff JA, Chan EP, Uemura M, Sevigny J, Wells RG. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology. 2007;46(4):1246–56.  https://doi.org/10.1002/hep.21792.CrossRefPubMedGoogle Scholar
  140. 140.
    Olsen AL, Bloomer SA, Chan EP, Gaca MD, Georges PC, Sackey B, et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am J Physiol Gastrointest Liver Physiol. 2011;301(1):G110–8.  https://doi.org/10.1152/ajpgi.00412.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54.  https://doi.org/10.1016/j.ccr.2005.08.010.CrossRefPubMedGoogle Scholar
  142. 142.
    Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 2009;49(3):839–50.  https://doi.org/10.1002/hep.22731.CrossRefPubMedGoogle Scholar
  143. 143.
    Zhang H, Ozaki I, Mizuta T, Matsuhashi S, Yoshimura T, Hisatomi A, et al. Beta 1-integrin protects hepatoma cells from chemotherapy induced apoptosis via a mitogen-activated protein kinase dependent pathway. Cancer. 2002;95(4):896–906.  https://doi.org/10.1002/cncr.10751.CrossRefPubMedGoogle Scholar
  144. 144.
    Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53(4):1192–205.  https://doi.org/10.1002/hep.24108.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Shang N, Arteaga M, Zaidi A, Stauffer J, Cotler SJ, Zeleznik-Le NJ, et al. FAK is required for c-Met/β-catenin-driven hepatocarcinogenesis. Hepatology. 2015;61(1):214–26.  https://doi.org/10.1002/hep.27402.CrossRefPubMedGoogle Scholar
  146. 146.
    Bonzo Ja FCH, Matsubara T, Kim J-H, Gonzalez FJ. Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4α in adult mice. J Biol Chem. 2012;287(10):7345–56.  https://doi.org/10.1074/jbc.M111.334599.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Santangelo L, Marchetti A, Cicchini C, Conigliaro A, Conti B, Mancone C, et al. The stable repression of mesenchymal program is required for hepatocyte identity: a novel role for hepatocyte nuclear factor 4alpha. Hepatology. 2011;53(6):2063–74.  https://doi.org/10.1002/hep.24280.CrossRefPubMedGoogle Scholar
  148. 148.
    Nishikawa T, Bell A, Brooks JM, Setoyama K, Melis M, Han B, et al. Resetting the transcription factor network reverses terminal chronic hepatic failure. J Clin Invest. 2015;125(4):1533–44.  https://doi.org/10.1172/JCI73137.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Yue HY, Yin C, Hou JL, Zeng X, Chen YX, Zhong W, et al. Hepatocyte nuclear factor 4alpha attenuates hepatic fibrosis in rats. Gut. 2010;59(2):236–46.  https://doi.org/10.1136/gut.2008.174904.CrossRefPubMedGoogle Scholar
  150. 150.
    Lazarevich NL, Cheremnova OA, Varga EV, Ovchinnikov DA, Kudrjavtseva EI, Morozova OV, et al. Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors. Hepatology. 2004;39(4):1038–47.  https://doi.org/10.1002/hep.20155.CrossRefPubMedGoogle Scholar
  151. 151.
    Lazarevich NL, Shavochkina DA, Fleishman DI, Kustova IF, Morozova OV, Chuchuev ES, et al. Deregulation of hepatocyte nuclear factor 4 (HNF4)as a marker of epithelial tumors progression. Exp Oncol. 2010;32(3):167–71.PubMedGoogle Scholar
  152. 152.
    Ning BF, Ding J, Yin C, Zhong W, Wu K, Zeng X, et al. Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma. Cancer Res. 2010;70(19):7640–51.  https://doi.org/10.1158/0008-5472.CAN-10-0824.CrossRefPubMedGoogle Scholar
  153. 153.
    Späth GF, Weiss MC. Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells. J Cell Biol. 1998;140(4):935–46.  https://doi.org/10.1083/jcb.140.4.935.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Yin C, Lin Y, Zhang X, Chen YX, Zeng X, Yue HY, et al. Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-4alpha gene. Hepatology. 2008;48(5):1528–39.  https://doi.org/10.1002/hep.22510.CrossRefPubMedGoogle Scholar
  155. 155.
    Vidal-Vanaclocha F. The prometastatic microenvironment of the liver. Cancer Microenviron. 2008;1(1):113–29.  https://doi.org/10.1007/s12307-008-0011-6.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.  https://doi.org/10.1038/nrc1098.CrossRefPubMedGoogle Scholar
  157. 157.
    Calvo F, Ege N, Grande-garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15(6):637–46.  https://doi.org/10.1038/ncb2756.CrossRefPubMedGoogle Scholar
  158. 158.
    Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–29.  https://doi.org/10.1016/j.ccr.2012.01.007.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61.  https://doi.org/10.1126/science.1171362.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med. 2013;19(11):1410–22.  https://doi.org/10.1038/nm.3389.CrossRefPubMedGoogle Scholar
  161. 161.
    Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–34.  https://doi.org/10.1016/j.ccr.2014.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–47.  https://doi.org/10.1016/j.ccr.2014.04.021.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.  https://doi.org/10.1038/nm.3394.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Augustin G, Bruketa T, Korolija D, Milosevic M. Lower incidence of hepatic metastases of colorectal cancer in patients with chronic liver diseases: meta-analysis. Hepato-Gastroenterology. 2013;60(125):1164–8.  https://doi.org/10.5754/hge11561.CrossRefPubMedGoogle Scholar
  165. 165.
    Fisher ER, Hellstrom HR, Fisher B. Rarity of hepatic metastases in cirrhosis – a misconception. JAMA. 1960;174:366–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jennifer Y. Chen
    • 1
    • 2
  • Dhruv Thakar
    • 3
    • 4
  • Tammy T. Chang
    • 2
    • 3
  1. 1.Department of MedicineUniversity of CaliforniaSan FranciscoUSA
  2. 2.Liver CenterUniversity of CaliforniaSan FranciscoUSA
  3. 3.Deparment of SurgeryUniversity of CaliforniaSan FranciscoUSA
  4. 4.Center for Bioengineering and Tissue RegenerationUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations