Advertisement

Function-Revealing Encryption

Definitions and Constructions
  • Marc Joye
  • Alain Passelègue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11035)

Abstract

Multi-input functional encryption is a paradigm that allows an authorized user to compute a certain function—and nothing more—over multiple plaintexts given only their encryption. The particular case of two-input functional encryption has very exciting applications, including comparing the relative order of two plaintexts from their encrypted form (order-revealing encryption).

While being extensively studied, multi-input functional encryption is not ready for a practical deployment, mainly for two reasons. First, known constructions rely on heavy cryptographic tools such as multilinear maps. Second, their security is still very uncertain, as revealed by recent devastating attacks.

In this work, we investigate a simpler approach towards obtaining practical schemes for functions of particular interest. We introduce the notion of function-revealing encryption, a generalization of order-revealing encryption to any multi-input function as well as a relaxation of multi-input functional encryption. We then propose a simple construction of order-revealing encryption based on function-revealing encryption for simple functions, namely orthogonality testing and intersection cardinality. Our main result is an efficient order-revealing encryption scheme with limited leakage based on the standard \(\mathrm {DLin} \) assumption.

Keywords

Order-revealing encryption Property-preserving encryption Multi-input functional encryption Function-revealing encryption 

Notes

Acknowledgments

The second author was supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.

References

  1. 1.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press, Paris, 13–18 June 2004Google Scholar
  2. 2.
    Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: Functional encryption and property preserving encryption: New definitions and positive results. Cryptology ePrint Archive, Report 2013/744 (2013). http://eprint.iacr.org/2013/744
  3. 3.
    Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: On the practical security of inner product functional encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_35CrossRefGoogle Scholar
  4. 4.
    Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_15CrossRefGoogle Scholar
  5. 5.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_13CrossRefGoogle Scholar
  6. 6.
    Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_33CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_3CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_19CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_29CrossRefGoogle Scholar
  11. 11.
    Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: stronger security from weaker assumptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_30CrossRefzbMATHGoogle Scholar
  12. 12.
    Cash, D., Liu, F.H., O’Neill, A., Zhang, C.: Reducing the leakage in practical order-revealing encryption. Cryptology ePrint Archive, Report 2016/661 (2016). http://eprint.iacr.org/2016/661
  13. 13.
    Chatterjee, S., Das, M.P.L.: Property preserving symmetric encryption revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 658–682. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_27CrossRefGoogle Scholar
  14. 14.
    Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-52993-5_24CrossRefzbMATHGoogle Scholar
  15. 15.
    Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_20CrossRefGoogle Scholar
  16. 16.
    Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_1CrossRefGoogle Scholar
  17. 17.
    Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006, pp. 79–88. ACM Press, October/November 2006Google Scholar
  18. 18.
    Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-revealing encryption? In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1155–1166. ACM Press, October 2016Google Scholar
  19. 19.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_32CrossRefGoogle Scholar
  20. 20.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June 2013Google Scholar
  21. 21.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_11CrossRefGoogle Scholar
  22. 22.
    Haagh, H., Ji, Y., Li, C., Orlandi, C., Song, Y.: Revealing encryption for partial ordering. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 3–22. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71045-7_1CrossRefGoogle Scholar
  23. 23.
    Joye, M., Passelègue, A.: Function-revealing encryption. Cryptology ePrint Archive, Report 2016/622 (2016). http://eprint.iacr.org/2016/622
  24. 24.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_9CrossRefGoogle Scholar
  25. 25.
    Kawai, Y., Takashima, K.: Predicate- and attribute-hiding inner product encryption in a public key setting. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365, pp. 113–130. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04873-4_7CrossRefGoogle Scholar
  26. 26.
    Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key functional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 122–151. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_5CrossRefGoogle Scholar
  27. 27.
    Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications, and lower bounds. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1167–1178. ACM Press, October 2016Google Scholar
  28. 28.
    Lin, H.-Y., Tzeng, W.-G.: An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 456–466. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496137_31CrossRefGoogle Scholar
  29. 29.
    Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 375–391. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_23CrossRefGoogle Scholar
  30. 30.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  31. 31.
    Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_27CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.NXP SemiconductorsSan JoseUSA
  2. 2.UCLALos AngelesUSA

Personalised recommendations