Lower Bounds on Structure-Preserving Signatures for Bilateral Messages
Abstract
Lower bounds for structure-preserving signature (SPS) schemes based on non-interactive assumptions have only been established in the case of unilateral messages, i.e. schemes signing tuples of group elements all from the same source group. In this paper, we consider the case of bilateral messages, consisting of elements from both source groups. We show that, for Type-III bilinear groups, SPS’s must consist of at least 6 group elements: many more than the 4 elements needed in the unilateral case, and optimal, as it matches a known upper bound from the literature. We also obtain the first non-trivial lower bounds for SPS’s in Type-II groups: a minimum of 4 group elements, whereas constructions with 3 group elements are known from interactive assumptions.
Keywords
Structure-preserving signatures Bilateral messages Crucial relationReferences
- 1.Abe, M., Ambrona, M., Ohkubo, M., Tibouchi, M.: Lower bounds on structurepreserving signatures for bilateral messages. IACR Cryptology ePrint Archive 2018/640 (2018). https://eprint.iacr.org/2018/640
- 2.Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. J. Cryptol. 29(4), 833–878 (2016)MathSciNetCrossRefGoogle Scholar
- 3.Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. J. Cryptol. 29(2), 363–421 (2016)MathSciNetCrossRefGoogle Scholar
- 4.Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_37CrossRefzbMATHGoogle Scholar
- 5.Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_34CrossRefGoogle Scholar
- 6.Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures from type II pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 390–407. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_22. Full version: IACR Cryptology ePrint Archive 2014/312CrossRefGoogle Scholar
- 7.Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures from type II pairings. IACR Cryptology ePrint Archive, 2014/312 (2014)Google Scholar
- 8.Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_29CrossRefGoogle Scholar
- 9.Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3CrossRefGoogle Scholar
- 10.Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054117CrossRefGoogle Scholar
- 11.Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 286–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_13CrossRefGoogle Scholar
- 12.Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_18CrossRefGoogle Scholar
- 13.Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
- 14.Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. Cryptology ePrint Archive, Report 2017/620 (2017). https://eprint.iacr.org/2017/620
- 15.Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. IACR Cryptology ePrint Archive 2015/626 (2015). https://eprint.iacr.org/2015/626
- 16.Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008). Applications of Algebra to CryptographyMathSciNetCrossRefGoogle Scholar
- 17.Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_6CrossRefGoogle Scholar
- 18.Ghadafi, E.: Short structure-preserving signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 305–321. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_18CrossRefGoogle Scholar
- 19.Ghadafi, E.: How low can you go? Short structure-preserving signatures for Diffie-Hellman vectors. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 185–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_10CrossRefGoogle Scholar
- 20.Ghadafi, E.: More efficient structure-preserving signatures - or: bypassing the type-III lower bounds. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 43–61. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_3CrossRefGoogle Scholar
- 21.Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–sahai proofs revisited. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_11CrossRefGoogle Scholar
- 22.Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilinear assumptions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 183–209. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_7CrossRefGoogle Scholar
- 23.Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_14CrossRefGoogle Scholar
- 24.Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving signatures: standard model security from simple assumptions. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_15CrossRefGoogle Scholar
- 25.Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_1CrossRefGoogle Scholar
- 26.Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7CrossRefGoogle Scholar