Mathematical Analysis of the Impact of Social Structure on Ectoparasite Load in Allogrooming Populations

  • Heather Z. Brooks
  • Maryann E. Hohn
  • Candice R. Price
  • Ami E. Radunskaya
  • Suzanne S. Sindi
  • Nakeya D. Williams
  • Shelby N. Wilson
  • Nina H. Fefferman
Part of the Association for Women in Mathematics Series book series (AWMS, volume 14)


In many social species, there exist a few highly connected individuals living among a larger majority of poorly connected individuals. Previous studies have shown that, although this social network structure may facilitate some aspects of group-living (e.g., collective decision-making), these highly connected individuals can act as super-spreaders of circulating infectious pathogens. We build on this literature to instead consider the impact of this type of network structure on the circulation of ectoparasitic infections in a population. We consider two ODE models that each approximate a simplified network model; one with uniform social contacts, and one with a few highly connected individuals. We find that, rather than increasing risk, the inclusion of highly connected individuals increases the probability that a population will be able to eradicate ectoparasitic infection through social grooming.


  1. 1.
    L.J. Allen, Some discrete-time SI, SIR, and SIS epidemic models. Math. Biosci. 124, 83–105 (1994)CrossRefGoogle Scholar
  2. 2.
    L.J. Allen, A.M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math. Biosci. 163(1), 1–33 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    G. An, Agent-based computer simulation and SIRS: building a bridge between basic science and clinical trials. Shock 16(4), 266–273 (2001)CrossRefGoogle Scholar
  4. 4.
    R.M. Anderson, R.M. May, Population biology of infectious diseases Part I. Nature 280, 361–367 (1979)CrossRefGoogle Scholar
  5. 5.
    A.-L. Barabasi, Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A.-L. Barabási, E. Bonabeau, Scale-free networks. Sci. Am. 288(5), 60–69 (2003)CrossRefGoogle Scholar
  7. 7.
    C. Dhanaraj, A. Parkhe, Orchestrating innovation networks. Acad. Manag. Rev. 31(3), 659–669 (2006)CrossRefGoogle Scholar
  8. 8.
    S. Drozdz, Physical approach to complex systems. Phys. Rep. Rev. Sect. Phys. Lett. 515(3–4), 115–226 (2012)MathSciNetGoogle Scholar
  9. 9.
    W. Duan, Z. Fan, P. Zhang, G. Guo, X. Qiu, Mathematical and computational approaches to epidemic modeling: a comprehensive review. Front. Comput. Sci. 9(5), 806–826 (2015)CrossRefGoogle Scholar
  10. 10.
    K. Eames, S. Bansal, S. Frost, S. Riley, Six challenges in measuring contact networks for use in modelling. Epidemics 10, 72–77 (2015)CrossRefGoogle Scholar
  11. 11.
    N. Fefferman, K. Ng, How disease models in static networks can fail to approximate disease in dynamic networks. Phys. Rev. E 76, 031919 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    N.H. Fefferman, K.L. Ng, The role of individual choice in the evolution of social complexity. Ann. Zool. Fenn. 44, 58–69 (2007). JSTORGoogle Scholar
  13. 13.
    R.H. Griffin, C.I. Nunn, Community structure and the spread of infectious disease in primate social networks. Evol. Ecol. 26, 779–800 (2012)CrossRefGoogle Scholar
  14. 14.
    K. Hock, N.H. Fefferman, Social organization patterns can lower disease risk without associated disease avoidance or immunity. Ecol. Complex. 12, 34–42 (2012)CrossRefGoogle Scholar
  15. 15.
    W. Huang, C. Li, Epidemic spreading in scale-free networks with community structure. J. Stat. Mech: Theory Exp. 2007(01), P01014 (2007)CrossRefGoogle Scholar
  16. 16.
    P. Jordano, J. Bascompte, J. Olesen, Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett. 6(1), 69–81 (2003)CrossRefGoogle Scholar
  17. 17.
    W. Karesh, R. Cook, E. Bennett, J. Newcomb, Wildlife trace and global disease emergence. Emerg. Infect. Dis. 11(7), 1000–1002 (2005)CrossRefGoogle Scholar
  18. 18.
    M. Keeling, The effects of local spatial structure on epidemiological invasions. Proc. Biol. Sci. 266, 859–867 (1999)CrossRefGoogle Scholar
  19. 19.
    W. Kermack, A. McKendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 700–721 (1927). CrossRefGoogle Scholar
  20. 20.
    S. Lion, S. Gandon, Evolution of spatially structured host-parasite interactions. J. Evol. Biol. 28, 10–28 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Mactintosh, C. Jacobs, A. Nad Garcia, K. Shimizu, K. Mouri, M. Huffman, A. Hernandez, Monkeys in the middle: parasite transmission through the social network of a wild primate. PLoSOne 7, e51144 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Newman, The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    R. Pastor-Santoras, A. Vespignani, Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)CrossRefGoogle Scholar
  24. 24.
    M. Peltomäki, V. Vuorinen, M. Alava, M. Rost, Host-parasite models on graphs. Phys. Rev. E 72(4), 046134 (2005)Google Scholar
  25. 25.
    S. Riley, K. Eames, V. Isham, D. Mollison, P. Trapman, Five challenges for spatial epidemic models. Epidemics 10, 68–71 (2015)CrossRefGoogle Scholar
  26. 26.
    R.B. Rosengaus, A.B. Maxmen, L.E. Coates, J.F. Traniello, Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav. Ecol. Sociobiol. 44(2), 125–134 (1998)CrossRefGoogle Scholar
  27. 27.
    P. Sah, J. Mann, S. Bansal, Disease implications of animal social network structure: a synthesis across social systems. Cold Spring Harbor Laboratory, February 2017. CrossRefGoogle Scholar
  28. 28.
    D. Salkeld, M. Salathé, P. Stapp, J. Johes, Plague outbreaks in prairie dog populations explained by percolation threshold of alternate host abundance. Proc. Natl. Acad. Sci. U.S.A. 107, 14247–14250 (2010)CrossRefGoogle Scholar
  29. 29.
    C. Sauter, R. Morris, Dominance hierarchies in cattle and red deer (Cerus elaphus): their possible relationship to the transmission of bovine tuberculosis. N. Z. Vet. J. 43, 301–305 (1995)CrossRefGoogle Scholar
  30. 30.
    P. Schmid-Hempel, Parasites and their social hosts. Trends Parasitol. 33(6), 453–462 (2017)CrossRefGoogle Scholar
  31. 31.
    S.D. Webb, M.J. Keeling, M. Boots, Host-parasite interactions between the local and the mean-field: how and when does spatial population structure matter? J. Theor. Biol. 249, 140–152 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    R. West, J. Thompson, Models for the simple epidemic. Math. Biosci. 141(1), 29–39 (1997)CrossRefGoogle Scholar
  33. 33.
    T. Wey, D.T. Blumstein, W. Shen, F. Jordán, Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim. Behav. 75(2), 333–344 (2008)CrossRefGoogle Scholar
  34. 34.
    S.H. Whilte, A.M. del Rey, G.R. Sanchez, Modeling epidemics using cellular automata. Appl. Math. Comput. 186(1), 193–202 (2007)MathSciNetzbMATHGoogle Scholar
  35. 35.
    L.A. White, J.D. Forester, M.E. Craft, Dynamic, spatial models of parasite transmission in wildlife: their structure, applications and remaining challenges. J. Anim. Ecol. 87, 1–22 (2017)Google Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2018

Authors and Affiliations

  • Heather Z. Brooks
    • 1
  • Maryann E. Hohn
    • 2
  • Candice R. Price
    • 3
  • Ami E. Radunskaya
    • 4
  • Suzanne S. Sindi
    • 5
  • Nakeya D. Williams
    • 6
  • Shelby N. Wilson
    • 7
  • Nina H. Fefferman
    • 8
  1. 1.University of UtahSalt Lake CityUSA
  2. 2.University of California, Santa BarbaraSanta BarbaraUSA
  3. 3.University of San DiegoSan DiegoUSA
  4. 4.Mathematics DepartmentPomona CollegeClaremontUSA
  5. 5.University of California MercedMercedUSA
  6. 6.United States Military AcademyWest PointUSA
  7. 7.Morehouse CollegeAtlantaUSA
  8. 8.University of TennesseeKnoxvilleUSA

Personalised recommendations