Advertisement

Stem Cells for the Treatment of Ovarian Cancer

  • Kanwal Rehman
  • Muhammad Sajid Hamid AkashEmail author
Chapter
Part of the Stem Cells in Clinical Applications book series (SCCA)

Abstract

Despite the availability of amended surgical approaches and chemotherapeutic agents used for ovarian cancer, still the rate of survival from late stage ovarian cancer is only 30% out of 80% of the initial response. The probable reason might be the variable congenital as well as acquired genetic factors. Perhaps, because of these two possible reasons, ovarian cancer cells are known to possess the ability of developing resistance for chemotherapeutic agent used against their treatment. The use of ovarian cancer stem cells (CSCs) has been investigated aiming to find some alternatives to overcome the issue of chemoresistance of ovarian cancer cells. Capacity of self-renewal and pluripotent nature of stem cells are two main characteristics which make them capable enough to be used in this regard. As a result, CSCs have been found to be more resistant towards chemotherapeutic agents as well as radiation therapy than the more differentiated cells taken from the same tissue. Population of CSCs for different types of cells may be different. Several CSCs have been isolated by noticing the manifestation of extracellular markers that are thought to be specific for stem cells. CD133, CD117, EpCAM, CD44, and ALDH1A1 are the most commonly used biomarkers to separate the stem cells in normal as well as in tumor cells. Hence this chapter will discuss in detail the literature update on ovarian CSCs and their important strategic role for potential pharmacological and therapeutic applications in future.

Keywords

Cancer stem cells Ovarian cancer Therapeutic strategies 

Abbreviations

AACR

American Association for Cancer research

ALDH1A1

Aldehyde dehydrogenase-1A1

ATRA

All-trans-retinoic acid

CD

Cluster of differentiation

CSCs

Cancer stem cells

DM

Diabetes mellitus

EpCAM

Epithelial cell adhesion molecules

FAK

Focal adhesion kinase

SCs

Stem cells

STAT3

Signal transducer and activator of transcription 3

ZEB2

Zinc finger E-box-binding homeobox 2

Notes

Conflict of Interest

The authors declare that they do not have any conflict of interests for this chapter.

References

  1. Akash MSH, Rehman K, Parveen A, Ibrahim M (2016) Antibody-drug conjugates as drug carrier systems for bioactive agents. Int J Polym Mater Polym Biomater 65(1):1–10Google Scholar
  2. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M, Visintin I (2009) and others. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 8(1):158–166PubMedPubMedCentralGoogle Scholar
  3. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22(2):255–288PubMedGoogle Scholar
  4. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S et al (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28(2):209–218PubMedGoogle Scholar
  5. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedPubMedCentralGoogle Scholar
  6. Bast RC Jr, Hennessy B, Mills GB (2009) The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9(6):415–428PubMedPubMedCentralGoogle Scholar
  7. Bellone S, Siegel ER, Cocco E, Cargnelutti M, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD (2009) Overexpression of epithelial cell adhesion molecule in primary, metastatic, and recurrent/chemotherapy-resistant epithelial ovarian cancer: implications for epithelial cell adhesion molecule-specific immunotherapy. Int J Gynecol Cancer 19(5):860–866PubMedGoogle Scholar
  8. Blagosklonny MV (2007) Cancer stem cell and cancer stemloids: from biology to therapy. Cancer Biol Ther 6(11):1684–1690PubMedGoogle Scholar
  9. Bristow RE, Puri I, Chi DS (2009) Cytoreductive surgery for recurrent ovarian cancer: a meta-analysis. Gynecol Oncol 112(1):265–274PubMedGoogle Scholar
  10. Burgos-Ojeda D, Rueda BR, Buckanovich RJ (2012) Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer Lett 322(1):1–7PubMedPubMedCentralGoogle Scholar
  11. Carcangiu ML, Radice P, Manoukian S, Spatti G, Gobbo M, Pensotti V, Crucianelli R, Pasini B (2004) Atypical epithelial proliferation in fallopian tubes in prophylactic salpingo-oophorectomy specimens from BRCA1 and BRCA2 germline mutation carriers. Int J Gynecol Pathol 23(1):35–40PubMedGoogle Scholar
  12. Chau WK, Ip CK, Mak AS, Lai HC, Wong AS (2013) c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/beta-catenin-ATP-binding cassette G2 signaling. Oncogene 32(22):2767–2781PubMedGoogle Scholar
  13. Choi YL, Kim SH, Shin YK, Hong YC, Lee SJ, Kang SY, Ahn G (2005) Cytoplasmic CD24 expression in advanced ovarian serous borderline tumors. Gynecol Oncol 97(2):379–386PubMedGoogle Scholar
  14. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344PubMedPubMedCentralGoogle Scholar
  15. Clarke-Pearson DL (2009) Clinical practice. Screening for ovarian cancer. N Engl J Med 361(2):170–177PubMedGoogle Scholar
  16. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR (2009) and others. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27(12):2875–2883PubMedGoogle Scholar
  17. Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S et al (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5(4):e10277PubMedPubMedCentralGoogle Scholar
  18. Dubeau L (2008) The cell of origin of ovarian epithelial tumours. Lancet Oncol 9(12):1191–1197PubMedPubMedCentralGoogle Scholar
  19. Emmanuel C, Gava N, Kennedy C, Balleine RL, Sharma R, Wain G, Brand A, Hogg R, Etemadmoghadam D, George J et al (2011) Comparison of expression profiles in ovarian epithelium in vivo and ovarian cancer identifies novel candidate genes involved in disease pathogenesis. PLoS One 6(3):e17617PubMedPubMedCentralGoogle Scholar
  20. Fargeas CA, Corbeil D, Huttner WB (2003) AC133 antigen, CD133, prominin-1, prominin-2, etc.: prominin family gene products in need of a rational nomenclature. Stem Cells 21(4):506–508PubMedGoogle Scholar
  21. Farghaly S (2014) Cancer stem cells (Csc’s): emerging concept and strategy for targeting progression of epithelial ovarian cancer. Enliven: Challenges Cancer Detect Ther 1(1):e001Google Scholar
  22. Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M, Martinelli E, Rutella S, Paglia A et al (2008) Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer 18(3):506–514PubMedGoogle Scholar
  23. Ferrandina G, Martinelli E, Petrillo M, Prisco MG, Zannoni G, Sioletic S, Scambia G (2009) CD133 antigen expression in ovarian cancer. BMC Cancer 9:221PubMedPubMedCentralGoogle Scholar
  24. Flesken-Nikitin A, Hwang CI, Cheng CY, Michurina TV, Enikolopov G, Nikitin AY (2013) Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature 495(7440):241–245PubMedPubMedCentralGoogle Scholar
  25. Foster R, Buckanovich RJ, Rueda BR (2013) Ovarian cancer stem cells: working towards the root of stemness. Cancer Lett 338(1):147–157PubMedGoogle Scholar
  26. Friel AM, Sergent PA, Patnaude C, Szotek PP, Oliva E, Scadden DT, Seiden MV, Foster R, Rueda BR (2008) Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle 7(2):242–249PubMedGoogle Scholar
  27. Gao MQ, Choi YP, Kang S, Youn JH, Cho NH (2010) CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29(18):2672–2680PubMedGoogle Scholar
  28. Gimenez-Bonafe P, Tortosa A, Perez-Tomas R (2009) Overcoming drug resistance by enhancing apoptosis of tumor cells. Curr Cancer Drug Targets 9(3):320–340PubMedGoogle Scholar
  29. Guddati AK (2012) Ovarian cancer stem cells: elusive targets for chemotherapy. Med Oncol 29(5):3400–3408PubMedGoogle Scholar
  30. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedPubMedCentralGoogle Scholar
  31. Hope KJ, Jin L, Dick JE (2003) Human acute myeloid leukemia stem cells. Arch Med Res 34(6):507–514PubMedGoogle Scholar
  32. Imrich S, Hachmeister M, Gires O (2012) EpCAM and its potential role in tumor-initiating cells. Cell Adh Migr 6(1):30–38PubMedPubMedCentralGoogle Scholar
  33. Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, Kyba M, Barton MC (2012) p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol 10(2):e1001268PubMedPubMedCentralGoogle Scholar
  34. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249PubMedGoogle Scholar
  35. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300PubMedGoogle Scholar
  36. Jordan CT (2004) Cancer stem cell biology: from leukemia to solid tumors. Curr Opin Cell Biol 16(6):708–712PubMedGoogle Scholar
  37. Karst AM, Drapkin R (2010) Ovarian cancer pathogenesis: a model in evolution. J Oncol 2010:932371PubMedGoogle Scholar
  38. Katz E, Skorecki K, Tzukerman M (2009) Niche-dependent tumorigenic capacity of malignant ovarian ascites-derived cancer cell subpopulations. Clin Cancer Res 15(1):70–80PubMedGoogle Scholar
  39. Kim TH, Suh DH, Kim MK, Song YS (2014) Metformin against cancer stem cells through the modulation of energy metabolism: special considerations on ovarian cancer. Biomed Res Int 2014:132702PubMedPubMedCentralGoogle Scholar
  40. Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35(3):255–262PubMedGoogle Scholar
  41. Kryczek I, Liu S, Roh M, Vatan L, Szeliga W, Wei S, Banerjee M, Mao Y, Kotarski J, Wicha MS et al (2012) Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer 130(1):29–39PubMedGoogle Scholar
  42. Kurman RJ, Shih IM (2010) The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol 34(3):433–443PubMedPubMedCentralGoogle Scholar
  43. Kusumbe AP, Bapat SA (2008) Ovarian stem cell biology and the emergence of ovarian cancer stem cells. In: Bapat S, Hoboken NJ (eds) Cancer stem cells. Wiley, Hoboken, pp 95–110Google Scholar
  44. Kusumbe AP, Mali AM, Bapat SA (2009) CD133-expressing stem cells associated with ovarian metastases establish an endothelial hierarchy and contribute to tumor vasculature. Stem Cells 27(3):498–508PubMedGoogle Scholar
  45. Landen CN Jr, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM et al (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9(12):3186–3199PubMedPubMedCentralGoogle Scholar
  46. Lawrenson K, Gayther SA (2009) Ovarian cancer: a clinical challenge that needs some basic answers. PLoS Med 6(2):e25PubMedGoogle Scholar
  47. Ledermann JA, Raja FA, Fotopoulou C, Gonzalez-Martin A, Colombo N, Sessa C (2013) Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(Suppl 6):vi24–vi32PubMedGoogle Scholar
  48. Leeper K, Garcia R, Swisher E, Goff B, Greer B, Paley P (2002) Pathologic findings in prophylactic oophorectomy specimens in high-risk women. Gynecol Oncol 87(1):52–56PubMedGoogle Scholar
  49. Leitao MM Jr, Chi DS (2009) Surgical management of recurrent ovarian cancer. Semin Oncol 36(2):106–111PubMedGoogle Scholar
  50. Lim YC, Kang HJ, Kim YS, Choi EC (2012) All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/beta-catenin pathway. Eur J Cancer 48(17):3310–3318PubMedGoogle Scholar
  51. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67PubMedPubMedCentralGoogle Scholar
  52. Luo L, Zeng J, Liang B, Zhao Z, Sun L, Cao D, Yang J, Shen K (2011) Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol 91(2):596–602PubMedGoogle Scholar
  53. Marchitti SA, Brocker C, Stagos D, Vasiliou V (2008) Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 4(6):697–720PubMedPubMedCentralGoogle Scholar
  54. Miettinen M, Lasota J (2005) KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 13(3):205–220PubMedGoogle Scholar
  55. Moreb JS (2008) Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 3(4):237–246PubMedGoogle Scholar
  56. Moulla A, Miliaras D, Sioga A, Kaidoglou A, Economou L (2013) The immunohistochemical expression of CD24 and CD171 adhesion molecules in borderline ovarian tumors. Pol J Pathol 64(3):180–184PubMedGoogle Scholar
  57. Murdoch WJ, McDonnel AC (2002) Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction 123(6):743–750PubMedGoogle Scholar
  58. Ness RB, Cottreau C (1999) Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst 91(17):1459–1467PubMedGoogle Scholar
  59. Orian-Rousseau V (2010) CD44, a therapeutic target for metastasising tumours. Eur J Cancer 46(7):1271–1277PubMedGoogle Scholar
  60. Palmirotta R, Silvestris E, D’Oronzo S, Cardascia A, Silvestris F (2017) Ovarian cancer: novel molecular aspects for clinical assessment. Crit Rev Oncol Hematol 117:12–29PubMedGoogle Scholar
  61. Pauli C, Munz M, Kieu C, Mack B, Breinl P, Wollenberg B, Lang S, Zeidler R, Gires O (2003) Tumor-specific glycosylation of the carcinoma-associated epithelial cell adhesion molecule EpCAM in head and neck carcinomas. Cancer Lett 193(1):25–32PubMedGoogle Scholar
  62. Peng S, Maihle NJ, Huang Y (2010) Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29(14):2153–2159PubMedGoogle Scholar
  63. Permuth-Wey J, Sellers TA (2009) Epidemiology of ovarian cancer. Methods Mol Biol 472:413–437PubMedGoogle Scholar
  64. Pignata S, Scambia G, Ferrandina G, Savarese A, Sorio R, Breda E, Gebbia V, Musso P, Frigerio L, Del Medico P et al (2011) Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: the MITO-2 randomized phase III trial. J Clin Oncol 29(27):3628–3635PubMedGoogle Scholar
  65. Rehman K, Akash MSH (2017) Recent advances in lung regeneration. In: Pham PV (ed) Liver, lung and heart regeneration. Springer, Cham, pp 119–134Google Scholar
  66. Rehman K, Iqbal MJ, Zahra N, Akash MS (2014) Liver stem cells: from preface to advancements. Curr Stem Cell Res Ther 9(1):10–21PubMedGoogle Scholar
  67. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedGoogle Scholar
  68. Ruiz-Vela A, Aguilar-Gallardo C, Martinez-Arroyo AM, Soriano-Navarro M, Ruiz V, Simon C (2011) Specific unsaturated fatty acids enforce the transdifferentiation of human cancer cells toward adipocyte-like cells. Stem Cell Rev 7(4):898–909PubMedGoogle Scholar
  69. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287PubMedGoogle Scholar
  70. Sebastian M, Kuemmel A, Schmidt M, Schmittel A (2009) Catumaxomab: a bispecific trifunctional antibody. Drugs Today (Barc) 45(8):589–597Google Scholar
  71. Seimetz D, Lindhofer H, Bokemeyer C (2010) Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 36(6):458–467PubMedGoogle Scholar
  72. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51(1):1–28PubMedGoogle Scholar
  73. Shank JJ, Yang K, Ghannam J, Cabrera L, Johnston CJ, Reynolds RK, Buckanovich RJ (2012) Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol 127(2):390–397PubMedPubMedCentralGoogle Scholar
  74. Shi J, Zhou Z, Di W, Li N (2013) Correlation of CD44v6 expression with ovarian cancer progression and recurrence. BMC Cancer 13:182PubMedPubMedCentralGoogle Scholar
  75. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236PubMedGoogle Scholar
  76. Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston C, Kueck A, Reynolds RK et al (2011) Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 71(11):3991–4001PubMedPubMedCentralGoogle Scholar
  77. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedGoogle Scholar
  78. Society AC (2014) Cancer facts and figures. Atlanta, GA, The SocietyGoogle Scholar
  79. Soignet SL, Benedetti F, Fleischauer A, Parker BA, Truglia JA, Ra Crisp M, Warrell RP Jr (1998) Clinical study of 9-cis retinoic acid (LGD1057) in acute promyelocytic leukemia. Leukemia 12(10):1518–1521PubMedGoogle Scholar
  80. Steffensen KD, Alvero AB, Yang Y, Waldstrom M, Hui P, Holmberg JC, Silasi DA, Jakobsen A, Rutherford T, Mor G (2011) Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer. J Oncol 2011:620523PubMedPubMedCentralGoogle Scholar
  81. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890PubMedGoogle Scholar
  82. Tomao F, Papa A, Rossi L, Strudel M, Vici P, Lo Russo G, Tomao S (2013) Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach. J Exp Clin Cancer Res 32:48PubMedPubMedCentralGoogle Scholar
  83. Tothill IE (2009) Biosensors for cancer markers diagnosis. Semin Cell Dev Biol 20(1):55–62PubMedGoogle Scholar
  84. Whitworth JM, Londono-Joshi AI, Sellers JC, Oliver PJ, Muccio DD, Atigadda VR, Straughn JM Jr, Buchsbaum DJ (2012) The impact of novel retinoids in combination with platinum chemotherapy on ovarian cancer stem cells. Gynecol Oncol 125(1):226–230PubMedGoogle Scholar
  85. Wikborn C, Pettersson F, Moberg PJ (1996) Delay in diagnosis of epithelial ovarian cancer. Int J Gynaecol Obstet 52(3):263–267PubMedGoogle Scholar
  86. Wu Q, Guo R, Lin M, Zhou B, Wang Y (2011) MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol 122(1):149–154PubMedGoogle Scholar
  87. Xu CX, Xu M, Tan L, Yang H, Permuth-Wey J, Kruk PA, Wenham RM, Nicosia SV, Lancaster JM, Sellers TA et al (2012) MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J Biol Chem 287(42):34970–34978PubMedPubMedCentralGoogle Scholar
  88. Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV et al (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68(2):425–433PubMedGoogle Scholar
  89. Yin G, Alvero AB, Craveiro V, Holmberg JC, Fu HH, Montagna MK, Yang Y, Chefetz-Menaker I, Nuti S, Rossi M et al (2013) Constitutive proteasomal degradation of TWIST-1 in epithelial-ovarian cancer stem cells impacts differentiation and metastatic potential. Oncogene 32(1):39–49PubMedGoogle Scholar
  90. Yu Z, Li Y, Fan H, Liu Z, Pestell RG (2012) miRNAs regulate stem cell self-renewal and differentiation. Front Genet 3:191–195PubMedPubMedCentralGoogle Scholar
  91. Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, Lin J, Yahaya BH (2017) Targeting lung cancer stem cells: research and clinical impacts. Front Oncol 7:80PubMedPubMedCentralGoogle Scholar
  92. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Pharmacy, Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
  2. 2.Department of Pharmaceutical ChemistryGovernment College University FaisalabadFaisalabadPakistan

Personalised recommendations