Human Hepatic Stem/Progenitor Cells in Cancer and Liver Disease

  • Daniela Fanni
  • Clara Gerosa
  • Federica Lai
  • Gavino Faa
Part of the Stem Cells in Clinical Applications book series (SCCA)


The documentation and the characterization of human stem/progenitor cells of the liver are an interesting subject of the current scientific literature. The identification of hepatic stem/progenitor cells was first claimed in experimental animal models, while the chief support for their existence arises from several studies on cirrhosis, liver disease, and carcinogenesis. Liver stem/progenitor cells are typically characterized by the self-renewal ability that means being able to differentiate into diverse lineage after injury or damage. Liver stem/progenitor cells embody a heterogeneous population through a range of morphological and immunohistochemical features extending from bile duct cells to hepatocytes. Hepatocyte stem/progenitor cells acquire early the ability to metabolize and detoxify through the cytochrome oxidase system (CYP), among which CYP3A4 and CYP3A7 play a greater role. Keratins warrant to recognize the hepatocellular from the ductal stem/progenitors besides the ductular reaction in liver development and disease according with the model of differentiation and dedifferentiation from hepatoblast to hepatocytes. Cancerogenesis is linked to the stem/progenitor compartment, thus hepatocellular carcinoma originates from the hepatocytic lineage as well as cholangiocarcinoma from the ductal one, while the expression of different lineage immunohistochemical markers is considered a worse prognostic factor. Since the liver is colonized by an undifferentiated hematopoietic stem cell and becomes the major hematopoietic organ during fetal life the hematopoietic stem/progenitor cells should be also considered; indeed, this peculiar ability returns in specific bone marrow pathology.


Liver Stem Progenitor Disease Cirrhosis Hepatitis Cancer Hepatocellular carcinoma 



Cholangiocellular carcinoma


Cluster differentiation


Chemokine (C-X-C motif) ligand


Cytochrome oxidase system


Hepatocellular carcinoma






Primary biliary cholangitis


Tumor necrosis factor


  1. Alison MR, Choong C, Lim S (2007) Application of liver stem cells for cell therapy. Semin Cell Dev Biol 18(6):819–826PubMedCrossRefGoogle Scholar
  2. Alison MR, Islam S, Lim S (2009) Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 217(2):282–298PubMedCrossRefGoogle Scholar
  3. Baumann U, Crosby HA, Ramani P, Kelly DA, Strain AJ (1999) Expression of the stem cell factor receptor c-kit in normal and diseased pediatric liver: identification of a human hepatic progenitor cell? Hepatology 30(1):112–117PubMedCrossRefGoogle Scholar
  4. Bennoun M, Rissel M, Engelhardt N, Guillouzo A, Briand P, Weber-Benarous A (1993) Oval cell proliferation in early stages of hepatocarcinogenesis in simian virus 40 large T transgenic mice. Am J Pathol 143(5):1326–1336PubMedPubMedCentralGoogle Scholar
  5. Bjorkman S (2006) Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods? Clin Pharmacokinet 45(1):1–11PubMedCrossRefGoogle Scholar
  6. Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7(5):349–359PubMedCrossRefGoogle Scholar
  7. De Vos R, Desmet V (1992) Ultrastructural characteristics of novel epithelial cell types identified in human pathologic liver specimens with chronic ductular reaction. Am J Pathol 140(6):1441–1450PubMedPubMedCentralGoogle Scholar
  8. de Wildt SN, Kearns GL, Hop WC, Murry DJ, Abdel-Rahman SM, van den Anker JN (2002) Pharmacokinetics and metabolism of oral midazolam in preterm infants. Br J Clin Pharmacol 53(4):390–392PubMedPubMedCentralCrossRefGoogle Scholar
  9. Desmet VJ (2011) Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered. Virchows Arch 458(3):251–259PubMedCrossRefGoogle Scholar
  10. Dunsford HA, Sell S (1989) Production of monoclonal antibodies to preneoplastic liver cell populations induced by chemical carcinogens in rats and to transplantable Morris hepatomas. Cancer Res 49(17):4887–4893PubMedGoogle Scholar
  11. European Association For The Study Of The Liver, European Organisation For Research And Treatment Of Cancer (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56(4):908–943CrossRefGoogle Scholar
  12. Faa G, Van Eyken P, Roskams T, Miyazaki H, Serreli S, Ambu R, Desmet VJ (1998) Expression of cytokeratin 20 in developing rat liver and in experimental models of ductular and oval cell proliferation. J. Hepatol 29(4):628–633.Google Scholar
  13. Fanni D, Ambu R, Gerosa C, Nemolato S, Castagnola M, Van Eyken P, Faa G, Fanos V (2014a) Cytochrome P450 genetic polymorphism in neonatal drug metabolism: role and practical consequences towards a new drug culture in neonatology. Int J Immunopathol Pharmacol 27(1):5–13PubMedCrossRefGoogle Scholar
  14. Fanni D, Fanos V, Ambu R, Lai F, Gerosa C, Pampaloni P, Van Eyken P, Senes G, Castagnola M, Faa G (2014b) Overlapping between CYP3A4 and CYP3A7 expression in the fetal human liver during development. J Matern Fetal Neonatal Med:1–5Google Scholar
  15. Fanni D, Gerosa C, Lai F, Van Eyken P, Faa G (2016a) Stem/progenitor cells in the developing human liver: morphological and immunohistochemical features. J Pediatr Neonatal Individ Med 5(2):e050205Google Scholar
  16. Fanni D, Manchia M, Lai F, Gerosa C, Ambu R, Faa G (2016b) Immunohistochemical markers of CYP3A4 and CYP3A7: a new tool towards personalized pharmacotherapy of hepatocellular carcinoma. Eur J Histochem 60(2):2614PubMedPubMedCentralCrossRefGoogle Scholar
  17. Fanni D, Angotzi F, Lai F, Gerosa C, Senes G, Fanos V, Faa G (2018) Four stages of hepatic hematopoiesis in human embryos and fetuses. J Matern Fetal Neonatal Med 31(6):701–707PubMedCrossRefGoogle Scholar
  18. Fausto N (1990) Oval cells and liver carcinogenesis: an analysis of cell lineages in hepatic tumors using oncogene transfection techniques. Prog Clin Biol Res 331:325–334PubMedGoogle Scholar
  19. Geisler F, Nagl F, Mazur PK, Lee M, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT (2008) Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 48(2):607–616PubMedCrossRefGoogle Scholar
  20. Hirose Y, Itoh T, Miyajima A (2009) Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells. Exp Cell Res 315(15):2648–2657PubMedCrossRefGoogle Scholar
  21. Jakubowski A, Ambrose C, Parr M, Lincecum JM, Wang MZ, Zheng TS, Browning B, Michaelson JS, Baetscher M, Wang B, Bissell DM, Burkly LC (2005) TWEAK induces liver progenitor cell proliferation. J Clin Invest 115(9):2330–2340PubMedPubMedCentralCrossRefGoogle Scholar
  22. Johnson TN, Rostami-Hodjegan A, Tucker GT (2006) Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 45(9):931–956PubMedCrossRefGoogle Scholar
  23. Jung Y, McCall SJ, Li YX, Diehl AM (2007) Bile ductules and stromal cells express hedgehog ligands and/or hedgehog target genes in primary biliary cirrhosis. Hepatology 45(5):1091–1096PubMedCrossRefGoogle Scholar
  24. Kajikhina K, Tsuneto M, Melchers F (2015) Environments of hematopoiesis and B-lymphopoiesis in foetal liver. Clin Exp Rheumatol 33(92):S91–SS3PubMedGoogle Scholar
  25. Katoonizadeh A, Nevens F, Verslype C, Pirenne J, Roskams T (2006) Liver regeneration in acute severe liver impairment: a clinicopathological correlation study. Liver Int 26(10):1225–1233PubMedCrossRefGoogle Scholar
  26. Kearns GL, Robinson PK, Wilson JT, Wilson-Costello D, Knight GR, Ward RM, van den Anker JN (2003) Cisapride disposition in neonates and infants: in vivo reflection of cytochrome P450 3A4 ontogeny. Clin Pharmacol Ther 74(4):312–325PubMedCrossRefGoogle Scholar
  27. Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T (2004) The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 127(6):1775–1786PubMedCrossRefGoogle Scholar
  28. Kordes C, Haussinger D (2013) Hepatic stem cell niches. J Clin Invest 123(5):1874–1880PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kubota H, Reid LM (2000) Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc Natl Acad Sci U S A 97(22):12132–12137PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kuwahara R, Kofman AV, Landis CS, Swenson ES, Barendswaard E, Theise ND (2008) The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology 47(6):1994–2002PubMedPubMedCentralCrossRefGoogle Scholar
  31. Libbrecht L, Desmet V, Van Damme B, Roskams T (2000) Deep intralobular extension of human hepatic ‘progenitor cells’ correlates with parenchymal inflammation in chronic viral hepatitis: can ‘progenitor cells’ migrate? J Pathol 192(3):373–378PubMedCrossRefGoogle Scholar
  32. Libbrecht L, Desmet V, Roskams T (2005) Preneoplastic lesions in human hepatocarcinogenesis. Liver Int 25(1):16–27PubMedCrossRefGoogle Scholar
  33. Liu WH, Ren LN, Chen T, Liu LY, Tang LJ (2013) Stages based molecular mechanisms for generating cholangiocytes from liver stem/progenitor cells. World J Gastroenterol 19(41):7032–7041PubMedPubMedCentralCrossRefGoogle Scholar
  34. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885PubMedCrossRefGoogle Scholar
  35. Nijjar SS, Wallace L, Crosby HA, Hubscher SG, Strain AJ (2002) Altered Notch ligand expression in human liver disease: further evidence for a role of the Notch signaling pathway in hepatic neovascularization and biliary ductular defects. Am J Pathol 160(5):1695–1703PubMedPubMedCentralCrossRefGoogle Scholar
  36. Oertel M, Shafritz DA (2008) Stem cells, cell transplantation and liver repopulation. Biochim Biophys Acta 1782(2):61–74PubMedCrossRefGoogle Scholar
  37. Payushina OV (2012) Hematopoietic microenvironment in the fetal liver: roles of different cell populations. ISRN Cell Biol 2012:979480CrossRefGoogle Scholar
  38. Roskams T, Katoonizadeh A, Komuta M (2010) Hepatic progenitor cells: an update. Clin Liver Dis 14(4):705–718PubMedCrossRefGoogle Scholar
  39. Ruck P, Xiao JC, Pietsch T, Von Schweinitz D, Kaiserling E (1997) Hepatic stem-like cells in hepatoblastoma: expression of cytokeratin 7, albumin and oval cell associated antigens detected by OV-1 and OV-6. Histopathology 31(4):324–329PubMedCrossRefGoogle Scholar
  40. Schirmacher P, Held WA, Yang D, Biempica L, Rogler CE (1991) Selective amplification of periportal transitional cells precedes formation of hepatocellular carcinoma in SV40 large tag transgenic mice. Am J Pathol 139(1):231–241PubMedPubMedCentralGoogle Scholar
  41. Sell S (1990) Is there a liver stem cell? Cancer Res 50(13):3811–3815PubMedGoogle Scholar
  42. Sell S (1993) Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ Health Perspect 101(Suppl 5):15–26PubMedPubMedCentralCrossRefGoogle Scholar
  43. Sell S, Osborn K, Leffert HL (1981) Autoradiography of “oval cells” appearing rapidly in the livers of rats fed N-2-fluorenylacetamide in a choline devoid diet. Carcinogenesis 2(1):7–14PubMedCrossRefGoogle Scholar
  44. Senes G, Fanni D, Cois A, Uccheddu A, Faa G (2007) Intratumoral sampling variability in hepatocellular carcinoma: a case report. World J Gastroenterol 13(29):4019–4021PubMedPubMedCentralCrossRefGoogle Scholar
  45. Sigal SH, Brill S, Fiorino AS, Reid LM (1992) The liver as a stem cell and lineage system. Am J Phys 263(2 Pt 1):G139–G148Google Scholar
  46. Smits A, Kulo A, de Hoon JN, Allegaert K (2012) Pharmacokinetics of drugs in neonates: pattern recognition beyond compound specific observations. Curr Pharm Des 18(21):3119–3146PubMedCrossRefGoogle Scholar
  47. Spee B, Carpino G, Schotanus BA, Katoonizadeh A, Vander Borght S, Gaudio E, Roskams T (2010) Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut 59(2):247–257PubMedCrossRefGoogle Scholar
  48. Stachelscheid H, Urbaniak T, Ring A, Spengler B, Gerlach JC, Zeilinger K (2009) Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies. Tissue Eng A 15(7):1633–1643CrossRefGoogle Scholar
  49. Strain AJ, Crosby HA (2000) Hepatic stem cells. Gut 46(6):743–745PubMedPubMedCentralCrossRefGoogle Scholar
  50. Streetz KL, Tacke F, Leifeld L, Wustefeld T, Graw A, Klein C, Kamino K, Spengler U, Kreipe H, Kubicka S, Muller W, Manns MP, Trautwein C (2003) Interleukin 6/gp130-dependent pathways are protective during chronic liver diseases. Hepatology 38(1):218–229PubMedCrossRefGoogle Scholar
  51. Tan J, Hytiroglou P, Wieczorek R, Park YN, Thung SN, Arias B, Theise ND (2002) Immunohistochemical evidence for hepatic progenitor cells in liver diseases. Liver 22(5):365–373PubMedCrossRefGoogle Scholar
  52. Terada R, Yamamoto K, Hakoda T, Shimada N, Okano N, Baba N, Ninomiya Y, Gershwin ME, Shiratori Y (2003) Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases. Lab Investig 83(5):665–672PubMedCrossRefGoogle Scholar
  53. Thorgeirsson SS (1996) Hepatic stem cells in liver regeneration. FASEB J 10(11):1249–1256PubMedCrossRefGoogle Scholar
  54. Turner R, Lozoya O, Wang Y, Cardinale V, Gaudio E, Alpini G, Mendel G, Wauthier E, Barbier C, Alvaro D, Reid LM (2011) Human hepatic stem cell and maturational liver lineage biology. Hepatology 53(3):1035–1045PubMedPubMedCentralCrossRefGoogle Scholar
  55. Uenishi T, Kubo S, Yamamoto T, Shuto T, Ogawa M, Tanaka H, Tanaka S, Kaneda K, Hirohashi K (2003) Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence. Cancer Sci 94(10):851–857PubMedCrossRefGoogle Scholar
  56. Ueno Y, Alpini G, Yahagi K, Kanno N, Moritoki Y, Fukushima K, Glaser S, LeSage G, Shimosegawa T (2003) Evaluation of differential gene expression by microarray analysis in small and large cholangiocytes isolated from normal mice. Liver Int 23(6):449–459PubMedCrossRefGoogle Scholar
  57. Van Eyken P, Sciot R, Callea F, Van der Steen K, Moerman P, Desmet VJ (1988) The development of the intrahepatic bile ducts in man: a keratin-immunohistochemical study. Hepatology 8(6):1586–1595PubMedCrossRefGoogle Scholar
  58. Van Haele M, Roskams T (2017) Hepatic progenitor cells: an update. Gastroenterol Clin N Am 46(2):409–420CrossRefGoogle Scholar
  59. Wagers AJ, Christensen JL, Weissman IL (2002) Cell fate determination from stem cells. Gene Ther 9(10):606–612PubMedCrossRefGoogle Scholar
  60. Wang Y, Yao HL, Cui CB, Wauthier E, Barbier C, Costello MJ, Moss N, Yamauchi M, Sricholpech M, Gerber D, Loboa EG, Reid LM (2010) Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human hepatic stem cells to adult liver fates. Hepatology 52(4):1443–1454PubMedPubMedCentralCrossRefGoogle Scholar
  61. Wilson JW, Leduc EH (1958) Role of cholangioles in restoration of the liver of the mouse after dietary injury. J Pathol Bacteriol 76(2):441–449PubMedCrossRefGoogle Scholar
  62. Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, Budhu A, Zanetti KA, Chen Y, Qin LX, Tang ZY, Wang XW (2008) EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 68(5):1451–1461PubMedCrossRefGoogle Scholar
  63. Zanger UM, Klein K, Richter T, Toscano C, Zukunft J (2005) Impact of genetic polymorphism in relation to other factors on expression and function of human drug-metabolizing p450s. Toxicol Mech Methods 15(2):121–124PubMedCrossRefGoogle Scholar
  64. Zhou H, Rogler LE, Teperman L, Morgan G, Rogler CE (2007) Identification of hepatocytic and bile ductular cell lineages and candidate stem cells in bipolar ductular reactions in cirrhotic human liver. Hepatology 45(3):716–724PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Daniela Fanni
    • 1
  • Clara Gerosa
    • 1
  • Federica Lai
    • 1
  • Gavino Faa
    • 1
  1. 1.Division of PathologyUniversity of Cagliari, AOU CagliariCagliariItaly

Personalised recommendations