Advertisement

Cancer Stem Cells and Their Therapeutic Applications

  • Eiman Abdel Meguid
  • Ahmed El-Hashash
Chapter
Part of the Stem Cells in Clinical Applications book series (SCCA)

Abstract

Cancer is currently a major health problem that impacts human life worldwide. Several studies support the concept of stem cells in cancerogenesis. The cancer stem cell (CSC) population is tumorigenic and displays characteristic markers and properties of stem cells, including self- renewal/proliferation and differentiation. CSCs can play an important role in carcinogenesis. Many therapeutic strategies currently focus on ablating the subpopulation of CSCs using different approaches such as the overcoming of CSC resistance mechanisms or targeting key molecular pathways controlling these cells. Although these therapeutic strategies have few reported side effects, new strategies are still needed. In this chapter, we describe accumulated data on the stem cell concept of cancerogenesis, how dysregulation of stem cell self-renewal affects cancer transformation, and the roles of CSCs in cancer therapy. We also discuss how improving our current understanding of the biology, behavior, and environment of CSCs can help in advancing their applications in cancer therapies, and devising more effective therapeutic strategies and approaches for cancer.

Keywords

Stem cell Cancer Cell therapy Micro-environmental stresses Growth factors 

Abbreviations

AML

Acute myelogenous leukemia

BMPs

Bone morphogenetic proteins

CML

Chronic myelogenous leukemia

CSCs

Cancer stem cells

EMT

Epithelial-mesenchymal transition

HSCs

Hematopoietic stem cells

Sca-1

Stem cell antigen-1

VEGF

Vascular endothelial growth factor

Notes

Conflict of Interest

The author confirms that this book contents have no conflict of interest.

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988CrossRefGoogle Scholar
  2. Al-Hajj M, Becker MW, Wicha M, Weissman IL, Clarke MF (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14:43–47CrossRefGoogle Scholar
  3. Aponte PM, Caicedo A (2017) Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Intl 2017:1–17CrossRefGoogle Scholar
  4. Atena M, Reza AM, Mehran G (2014) A review on the biology of cancer stem cells. Stem Cell Discov 4:83–89CrossRefGoogle Scholar
  5. Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23:1124–1134CrossRefGoogle Scholar
  6. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8:545–554CrossRefGoogle Scholar
  7. Benson RA, Lowrey JA, Lamb JR, Howie SE (2004) The Notch and Sonic hedgehog signalling pathways in immunity. Mol Immunol 41:715–725CrossRefGoogle Scholar
  8. Blagosklonny MV (2006) Target for cancer therapy: proliferating cells or stem cells. Leukemia 20:385–391CrossRefGoogle Scholar
  9. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737CrossRefGoogle Scholar
  10. Bao S, Wu Q, Sathornsumetee S et al (2006 August 15) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848CrossRefGoogle Scholar
  11. Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ et al (2013) Acquisition of epithelial–mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis 4:875–884CrossRefGoogle Scholar
  12. Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316CrossRefGoogle Scholar
  13. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284CrossRefGoogle Scholar
  14. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284CrossRefGoogle Scholar
  15. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783CrossRefGoogle Scholar
  16. Dievart A, Beaulieu N, Jolicoeur P (1999) Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 18:5973–5981CrossRefGoogle Scholar
  17. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36:59–72CrossRefGoogle Scholar
  18. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:605–615CrossRefGoogle Scholar
  19. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira S-M, García-Echeverría C et al (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 106(1):268–273CrossRefGoogle Scholar
  20. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26:2839–2845CrossRefGoogle Scholar
  21. Fenaux P, Chastang C, Chevret S, Sanz M, Dombret H, Archimbaud E et al (1999) A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood 94:1192–1200PubMedGoogle Scholar
  22. Formelli F, Cleris L (1993) Synthetic retinoid fenretinide is effective against a human ovarian carcinoma xenograft and potentiates cisplatin activity. Cancer Res 53:5374–5376PubMedGoogle Scholar
  23. Francipane MG, Alea MP, Lombardo Y, Todaro M, Medema JP, Stassi G (2008) Crucial role of interleukin-4 in the survival of colon cancer stem cells. Cancer Res 68:4022–4025CrossRefGoogle Scholar
  24. Gal H, Makovitzki A, Amariglio N, Rechavi G, Ram Z, Givol D (2007) A rapid assay for drug sensitivity of glioblastoma stem cells. Biochem Biophys Res Commun 358:908–913CrossRefGoogle Scholar
  25. Gil J, Stembalska A, Pesz KA, Sasiadek MM (2008) Cancer stem cells: the theory and perspectives in cancer therapy. J App Genet 49:193–199CrossRefGoogle Scholar
  26. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C et al (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644CrossRefGoogle Scholar
  27. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22:436–448CrossRefGoogle Scholar
  28. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  29. Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743CrossRefGoogle Scholar
  30. Ito K, Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15(4):243–256CrossRefGoogle Scholar
  31. Jamieson C, Ailles L, Dylla S et al (2004) Granulocyte macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667CrossRefGoogle Scholar
  32. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174CrossRefGoogle Scholar
  33. Karhadkar SS, Bova GS, Abdallah N et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431:707–712CrossRefGoogle Scholar
  34. Kelly LM, Gilliland DG (2002) Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 3:179–198CrossRefGoogle Scholar
  35. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844CrossRefGoogle Scholar
  36. Kim CF, Jackson EL, Woolfenden AE et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835CrossRefGoogle Scholar
  37. Krause DS, Lazarides K, von Andrian UH, Van Etten RA (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12:1175–1180CrossRefGoogle Scholar
  38. Kreso A et al (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291CrossRefGoogle Scholar
  39. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648CrossRefGoogle Scholar
  40. Linkous AG, Yazlovitskaya EM (2012) Novel radiosensitizing anticancer therapeutics. Anticancer Res 32:2487–2499PubMedGoogle Scholar
  41. Liu S, Dontu G, Wicha MS (2005) Mammary stem cells, selfrenewal pathways, and carcinogenesis. Breast Cancer Res 7:86–95CrossRefGoogle Scholar
  42. Liu C, Zhao G, Liu J et al (2009) Novel biodegradable lipid nano complex for siRNA delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J Control Release 140:277–283CrossRefGoogle Scholar
  43. Munro MJ, Wickremesekera SK, Peng L et al (2018) Cancer stem cells in colorectal cancer: a review. J Clin Pathol 71:110–116CrossRefGoogle Scholar
  44. Nam Y, Aster JC, Blacklow SC (2002) Notch signaling as a therapeutic target. Curr Opin Chem Biol 6:501–509CrossRefGoogle Scholar
  45. Nassar D, Blanpain C (2016) Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 11:47–76CrossRefGoogle Scholar
  46. Nickoloff BJ, Osborne BA, Miele L (2003) Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 22:6598–6608CrossRefGoogle Scholar
  47. Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V (2017) Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Transl Med 6(12):2115–2125CrossRefGoogle Scholar
  48. Pece S, Serresi M, Santolini E et al (2004) Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167:215–221CrossRefGoogle Scholar
  49. Pecqueur C, Oliver L, Oizel K, Lalier L, Vallette FM (2013) Targeting metabolism to induce cell death in cancer cells and cancer stem cells. Int J Cell Biol 2013:805975Google Scholar
  50. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765CrossRefGoogle Scholar
  51. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848CrossRefGoogle Scholar
  52. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R et al (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568–580CrossRefGoogle Scholar
  53. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511CrossRefGoogle Scholar
  54. Potiron VA et al (2013) Radiosensitization of prostate cancer cells by the dual PI3K/mTOR inhibitor BEZ235 under normoxic and hypoxic conditions. Radiother Oncol 106:138–146CrossRefGoogle Scholar
  55. Qin W, Huang G, Chen Z, Zhang Y (2017) Nanomaterials in targeting cancer stem cells for cancer therapy. Front Pharmacol 8:1–15PubMedPubMedCentralGoogle Scholar
  56. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598CrossRefGoogle Scholar
  57. Reisfeld RA (2013) The tumor microenvironment: a target for combination therapy of breast cancer. Crit Rev Oncog 18:115–133CrossRefGoogle Scholar
  58. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115CrossRefGoogle Scholar
  59. Rich JN, Bao S (2007) Chemotherapy and cancer stem cells. Cell Stem Cell 1:353–355CrossRefGoogle Scholar
  60. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:1539–1545CrossRefGoogle Scholar
  61. Romer JT, Kimura H, Magdaleno S et al (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/_)p53(_/_) mice. Cancer Cell 6:229–240CrossRefGoogle Scholar
  62. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850.  https://doi.org/10.1038/nature03319CrossRefPubMedGoogle Scholar
  63. Shen S, Xia J-X, Wang J (2016) Nanomedicine-mediated cancer stem cell therapy. Biomaterials 74:1e18CrossRefGoogle Scholar
  64. Shigdar S, Lin J, Li Y, Yang CJ, Wei M, Zhus Y et al (2012) Cancer stem cell targeting: the next generation of cancer therapy and molecular imaging. Ther Deliv 3:227–244CrossRefGoogle Scholar
  65. Shkembi E, Daniele N, Zinno F, Omar GE (2016) Cancer stem cells and nanomedicine. Peertechz J Cytol Pathol 1(1):048–053Google Scholar
  66. Singh SK, Clarke ID, Hide T, Dirks PB (2004a) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273CrossRefGoogle Scholar
  67. Singh S, Hawkins C, Clarke I et al (2004b) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefGoogle Scholar
  68. Siziopikou K, Miao H, Rizzo P et al (2003) Notch signaling is a therapeutic target in breast cancer. In: Proceedings of the 94th annual meeting of the AACR. pp 1277–1278Google Scholar
  69. Soeda A, Inagaki A, Oka N, Ikegame Y, Aoki H, Yoshimura S et al (2008) Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 283:10958–10966CrossRefGoogle Scholar
  70. Tang DG (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22:457–472CrossRefGoogle Scholar
  71. Unden AB, Holmberg E, Lundh-Rozell B et al (1996) Mutations in the human homologue of Drosophila patched (PTCH) in basal cell carcinomas and the Gorlin syndrome: different in vivo mechanisms of PTCH inactivation. Cancer Res 56:4562–4565PubMedGoogle Scholar
  72. Weijzen S, Rizzo P, Braid M et al (2002) Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8:979–986CrossRefGoogle Scholar
  73. Williams DA, Cancelas JA (2006) Leukaemia: niche retreats for stem cells. Nature 444:827–828CrossRefGoogle Scholar
  74. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104:618–623CrossRefGoogle Scholar
  75. Yang X, Zhang X, Fu ML, Weichselbaum RR, Gajewski TF, Guo Y et al (2014) Targeting the tumor microenvironment with interferon-bridges innate and adaptive immune responses. Cancer Cell 25:37–48CrossRefGoogle Scholar
  76. Zhu Y, Ghosh P, Charnay P, Burns DK, Prada LF (2002) Nuerofibromas in NF1. Schwann cell origin and role of tumor environment. Science 296:920–922CrossRefGoogle Scholar
  77. Zieker D, Bühler S, Ustündag Z, Königsrainer I, Manncke S, Bajaeifer K et al (2013) Induction of tumor stem cell differentiation—novel strategy to overcome therapy resistance in gastric cancer. Langenbecks Arch Surg Dtsch Ges Für Chir 398:603–608CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Eiman Abdel Meguid
    • 1
  • Ahmed El-Hashash
    • 2
    • 3
  1. 1.Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University BelfastBelfastUK
  2. 2.The University of Edinburgh-Zhejiang International campus (UoE-ZJU Institute), and Centre of Stem Cell and Regenerative Medicine, Schools of Medicine & Basic Medicine, Zhejiang UniversityHainingChina
  3. 3.The University of Edinburgh-Zhejiang International Campus, (UoE-ZJU), Arts and Science BuildingHainingChina

Personalised recommendations