Materials-Based Solutions to Solar Energy System

  • Colin Tong


Solar energy is the cleanest and most abundant renewable energy source available in the world. This energy can be harnessed using a range of ever-evolving technologies, such as photovoltaics (PV), concentrating photovoltaics (CPV), concentrating solar power (CSP), solar thermal, and artificial photosynthesis. Materials-based solutions have been widely explored to improve and renew solar energy systems. Solar energy materials are used to harness the sun’s energy with special properties adapted and tuned so that they can absorb, reflect, transmit, or emit light and other electromagnetic radiation in the wavelength ranges for thermal, solar, and visible radiation. PV directly converts sunlight into electrical power. The growth of PV has been driven by lower costs due to increased efficiency, primarily from advances in PV materials mainly including crystalline silicon; thin films such as cadmium telluride (CdTe), copper-indium-gallium-diselenide (CIGS), or amorphous silicon (a-Si); multifunction systems with solar concentrators; and organic flexible molecular, polymeric, or nanoparticle-based cells. The superior optical, electric, and chemical properties of nanomaterials lead to the development of quantum well, quantum dot, dye sensitized, and organic solar cells. CSP uses reflectors to concentrate sunlight to generate high temperatures to heat fluids that drive steam turbines to produce utility-scale electric power. Materials research for CSP has been focused on improving optical materials for reflectors with greater durability and low cost; enhancing absorber materials and coatings with higher solar absorbance and low thermal emittance; develop thermal energy storage materials with improved heat capacity; and improve corrosion resistance of materials in contact with fluids like molten salts. Exceedingly, solar power has a vast resource base and incredible technical potential. Materials science and engineering offers the potential to significantly increase the amount of electricity generated from solar energy. This chapter will provide a brief review on the advanced materials solutions to various solar energy systems.


  1. Akarslan, F.: Photovoltaic systems and applications. In: Arzu Şencan (Ed.), Modeling and Optimization of Renewable Energy Systems, ISBN: 978–953–51-0600-5, InTech, doi: (2012). Accessed 24 March 2014
  2. Alghoul, M.A.: Review of materials for solar thermal collectors. Anti-Corrosion Methods Mater. 52(4), 199–206 (2005)CrossRefGoogle Scholar
  3. Azad, A.K., Kort-Kamp, W.J.M., Sykora, M., Weisse-Bernstein, N.R., Luk, T.S., Taylor, A.J., Dalvit, D.A.R., Chen, H.-T.: Metasurface broadband solar absorber. Sci. Rep. 6, 20347 (2016)CrossRefGoogle Scholar
  4. Baskoutas, S., Terzis, A.F.: Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99, 013708 (2006)CrossRefGoogle Scholar
  5. Bertolli, M.: Solar cell materials. (2008). Accessed 28 March 2014
  6. Boston, R., Schnepp, Z., Nemoto, Y., Sakka, Y., Hall, S.R.: In situ TEM observation of a microcrucible mechanism of nanowire growth. Science. 344(6184), 623–626 (2014)CrossRefGoogle Scholar
  7. Chaar, L.E., Iamont, L.A., Zein, N.E.: Review of photovoltaic technologies. Renew. Sust. Energ. Rev. 15, 2165–2175 (2011)CrossRefGoogle Scholar
  8. Charlier, J.C., et al.: Enhanced electron field emission in B-doped carbon nanotubes. Nano Lett. 2(11), 1191–1195 (2002)CrossRefGoogle Scholar
  9. Chaudhary, S., et al.: Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells. Nano Lett. 7(7), 1973–1979 (2007)CrossRefGoogle Scholar
  10. Chen, C., et al.: Nanowelded carbon-nanotube-based solar microcells. Small. 4(9), 1313–1318 (2008)CrossRefGoogle Scholar
  11. Chen, H.-T., Taylor, A.J., Yu, N.: A review of metasurfaces: physics and applications. Rep. Progress Phys. 79, 076401 (2016)CrossRefGoogle Scholar
  12. Chirumamilla, M., Roberts, A.S., Ding, F., Wang, D., Kristensen, P.K., Bozhevolnyi, S.I., Pedersen, K.: Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt. Mater. Express. 6(8), 2704 (2016)CrossRefGoogle Scholar
  13. Cinke, M., et al.: Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem. Phys. Lett. 365, 69 (2002)CrossRefGoogle Scholar
  14. Claremont: Chapter 2: Basic principles of solar technology. (2013). Accessed 6 December 2013
  15. Collins, P.G., et al.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science. 287(5459), 1801–1804 (2000)CrossRefGoogle Scholar
  16. Dayal, S., et al.: Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett. 10(1), 239–242 (2010)CrossRefGoogle Scholar
  17. van de Lagemaat, J., et al.: Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl. Phys. Lett. 88(23), 233503-1–233503-3 (2006)Google Scholar
  18. DOE: SunShot Vision Study. U.S. Department of Energy. Accessed 6 July 2017, Washington, DC (2012)Google Scholar
  19. ESTTP: Solar Heating and Cooling for a Sustainable Energy Future in Europe. (2007). Accessed 29 April 2014
  20. Feldman, D., Barbose, G., Margolis, R., Darghouth, N., James, T., Weaver, S., Goodrich, A., Wiser, R.: Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections. 2014 Edition. (2014). Accessed 6 July 2017
  21. Friedman, B., Ardani, K., Feldman, D., Citron, R., Margolis, R., Zuboy, J.: Benchmarking Non-hardware Balance-of-System (Soft) Costs for U.S. Photovoltaic Systems, Using a Bottom-Up Approach and Installer Survey, 2nd edn. National Renewable Energy Laboratory, Golden, CO NREL/TP-6A20–60412. Available at: (2013). Accessed 6 July 2017
  22. Garnett, E.C.: Nanowire solar cells. Ann. Rev. Mater. Res. 41, 269 (2011)CrossRefGoogle Scholar
  23. Ginger, D.S., Greenham, N.C.: Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals. Phys. Rev. B. 59(16), 624–629 (1999)CrossRefGoogle Scholar
  24. Green, M.A.: Third Generation Photovoltaics. Springer Verlag (2003)Google Scholar
  25. Hao, J., Wang, J., Liu, X., Padilla, W.J., Zhou, L., Qiu, M.: High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96(25), 251104 (2010)CrossRefGoogle Scholar
  26. Harrison, J.: Investigation of reflective materials for the solar cooker. (2001). Accepted 12 May 2014
  27. Hasobe, T., et al.: Organized assemblies of single wall carbon nanotubes and porphyrin for photochemical solar cells: charge injection from excited porphyrin into single-walled carbon nanotubes. J. Phys. Chem. B. 110(50), 25477–25484 (2006)CrossRefGoogle Scholar
  28. Hauer, A.: Thermal energy storage: Technology brief. IEA-ETSAP and IRENA© Technology Brief E17. (2013). Accessed May 20, 2014
  29. Hedayati, M.K., et al.: Review of plasmonic nanocomposite metamaterial absorber. Materials. 7, 1221–1248 (2014)CrossRefGoogle Scholar
  30. Herman, D.J., et al.: Orienting periodic organic−inorganic nanoscale domains through one-step electrodeposition. ACS Nano. 5(1), 565–573 (2011)CrossRefGoogle Scholar
  31. Hulshorst, W.: Residential photovoltaic systems. (2008). Accessed 13 February 2014
  32. Ibn-Mohammeda, T., Koha, S.C.L., Reaneyc, I.M., Acquayed, A., Schileoc, G., Mustaphae, K.B., Greenough, R.: Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sust. Energ. Rev. 80, 1321–1344 (2017)CrossRefGoogle Scholar
  33. IRENA: Solar photovoltaic—technology brief. IEA-ETSAP and IRENA© Technology Brief E11—January 2013. (2013). Accessed 12 February 2014
  34. Jung, Y., Li X., Rajan, N.K., Taylor, A.D., Reed, M.A.: Record high efficiency single-walled carbon nanotube/silicon p–n iunction solar cells. Nano Letters 13(1), 95–99 (2013)Google Scholar
  35. Kabira, E., Kumarb, P., Kumarc, S., Adelodund, A.A., Kim, K.-H.: Solar energy: potential and future prospects. Renew. Sust. Energ. Rev. 82, 894–900 (2018)CrossRefGoogle Scholar
  36. Kennedy, C.E.: Review of mid- to high-temperature solar selective absorber materials. NREL/TP-520-31267. (2002). Accepted 15 May 2014
  37. Kim, K.H., Han, C.H.: A review on solar collector and solar organic rankine cycle (ORC) systems. J. Autom. Control Eng. 3(1), 66–73 (2015)CrossRefGoogle Scholar
  38. Kymakis, E., et al.: High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J. Appl. Phys. 93(3), 1764–1768 (2003)CrossRefGoogle Scholar
  39. Lancelle-Beltran, E., Prené, P., Boscher, C., Belleville, P., Buvat, P., Sanchez, C.: All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency. Adv. Mater. 18(19), 2579–2582 (2006)CrossRefGoogle Scholar
  40. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)CrossRefGoogle Scholar
  41. Le Treut, H., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T., Prather, M.: Historical overview of climate change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY (2007)Google Scholar
  42. Lee, J.U.: Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 87(3), 073101 (2003)Google Scholar
  43. Lee, T.Y., et al.: Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films. 515(12), 5131–5135 (2007)CrossRefGoogle Scholar
  44. Li, Z., Saini, V.: Polymer functionalized n-type single wall carbon nanotube photovoltaic devices. Appl. Phys. Lett. 96(3), 033110 (2010)CrossRefGoogle Scholar
  45. Liu, X., Starr, T., Starr, A.F., Padilla, W.J.: Infrared spatial and frequency selective metamaterial with nearunity absorbance. Phys. Rev. Lett. 104(20), 207403 (2010)CrossRefGoogle Scholar
  46. Louwen, A., van Sark, W., Schropp, R., Faaij, A.: Solar Energy Mater. Solar Cells. 147, 295–314 (2016)CrossRefGoogle Scholar
  47. Luque, A., Hegedus, S.: Handbook of Photovoltaic Science and Engineering. John Wiley & Sons (2011). ISBN 978-0-470-97612-8Google Scholar
  48. Milliron, D.J., Gur, I., Alivisatos, A.P.: Hybrid organic–nanocrystal solar cells. MRS Bullet. 30, 41–44 (2005)CrossRefGoogle Scholar
  49. Moser, J.: Solar cells: later rather than sooner. Nat. Mater. 4(10), 723–724 (2005)CrossRefGoogle Scholar
  50. Mukhopadhyay, P.: Graphite, Graphene and their polymer nanocomposites, pp. 202–213. Taylor & Francis Group, Boca Raton, FL (2013). ISBN 978-1-4398-2779-6Google Scholar
  51. Niklasson, G.A., Granqvist, C.G.: Selectively solar-absorbing surfaces: optical properties and degradation. In: Granqvist, C.G. (ed.) Materials Science for Solar Energy Conversion Systems, pp. 70–105. Pergamon, Oxford (1991)CrossRefGoogle Scholar
  52. Parida, B., Iniyan, S., Goic, R.: A review of solar photovoltaic technologies. Renew. Sust. Energ. Rev. 15, 1625–1636 (2011)CrossRefGoogle Scholar
  53. Ruiz-Morales, J.C., Tarancόn, A., Canales-Vázquez, J., Mendez-Ramos, J., Hernandez-Afonso, L., Acosta-Mora, P., Marin Ruedac, J.R., Fernandez-Gonzalez, R.: Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 10, 846–859 (2017)CrossRefGoogle Scholar
  54. Saga, T.: Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2, 96–102 (2010)CrossRefGoogle Scholar
  55. Sargent, H.E.: Infrared quantum dots. Adv. Mater. 17, 515 (2005)CrossRefGoogle Scholar
  56. Saunders, B.R.: Hybrid polymer/nanoparticle solar cells: Preparation, principles and challenges. J. Colloid Interface Sci. 369(1), 1–15 (2012)CrossRefGoogle Scholar
  57. Saunders, B.R., Turner, M.L.: Nanoparticle-polymer photovoltaic cells. Adv. Colloid Interf. Sci. 138(1), 1–23 (2008)CrossRefGoogle Scholar
  58. Scheblykin, I.G., et al.: Excited state and charge photogeneration dynamics in conjugated polymers. J. Phys. Chem. B. 111(23), 6303–6321 (2007)CrossRefGoogle Scholar
  59. Seraphin, B.O., Meinel, A.B.: Solar energy conversion and the optical properties of solids. In: Seraphin, B.O. (ed.) Optical Properties of Solids: New Developments, pp. 927–971. North Holland Publishing Co., Amsterdam (1976)Google Scholar
  60. Shaheen, S.E., et al.: Organic-based photovoltaics. MRS Bullet. 30, 10 (2005)CrossRefGoogle Scholar
  61. Sharma, M.K., Tanwar, D., Singh, V.: Study of modification in the efficiency of solar cell. J. Global Res. Comput. Sci. 4(4), 112–118 (2013)Google Scholar
  62. Sharma, S., Jain, K.K., Sharma, A.: Solar cells: in research and applications—a review. Mater. Sci. Appl. 6, 1145–1155 (2015)Google Scholar
  63. Shaw, P.E., Ruseckas, A., Samuel, I.D.W.: Exciton diffusion measurements in poly (3-hexylthiophene). Adv. Mater. 20, 3516–3520 (2008)Google Scholar
  64. Sofos, M.: A synergistic assembly of nanoscale lamellar photoconductor hybrids. Nat. Mater. 8(1), 68–75 (2009)CrossRefGoogle Scholar
  65. Somani, P.R., et al.: Application of metal nanoparticles decorated carbon nanotubes in photovoltaics. Appl. Phys. Lett. 93(3), 033315 (2008)CrossRefGoogle Scholar
  66. Steinhagen, C.R.: CuInSe2 nanowires and earth-abundant nanocrystals for low-cost photovoltaics. The University of Texas at Austin. PhD dissertation (2013)Google Scholar
  67. Tao, H., Bingham, C.M., Strikwerda, A.C., Pilon, D., Shrekenhamer, D., Landy, D.I., Fan, K., Zhang, X., Padilla, W., Averitt, R.: Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Phys. Rev. B. 78(24), 241103R (2008)CrossRefGoogle Scholar
  68. Voss, K., Platzer, W., Robinson, P: Education of architects in solar energy and environment—Advanced glazing. (2014). Accessed 26 June 2017
  69. Wallentin, J., Anttu, N., Asoli, D., Huffman, M., Aberg, I., Magnusson, M.H., Siefer, G., Fuss-Kailuweit, P.: InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science. 339, 1057–1060 (2013)CrossRefGoogle Scholar
  70. Wang, H., Wang, L.: Perfect selective metamaterial solar absorbers. Opt. Express. 21(S6), A1078–A1093 (2013)CrossRefGoogle Scholar
  71. Watts, C.M., Liu, X., Padilla, W.J.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), OP98–OP120 (2012)Google Scholar
  72. Weickert, J.: Nanostructured organic and hybrid solar cells. Adv. Mater. 23, 1810 (2011)CrossRefGoogle Scholar
  73. Wu, L., Tian, W, Jiang, X.: Silicon-based solar cell system with a hybrid PV module. Solar Energy Materials & Solar Cells 87, 637–645 (2005)Google Scholar
  74. Zhang, Q.-C., Mills, D.R.: Very low-emittance solar selective surfaces using new film structures. J. Appl. Phys. 72(7), 3013–3021 (1992)CrossRefGoogle Scholar
  75. Zheng, B., Wang, W., Jiang, G., Wang, K., Mei, X.: Research status and application prospects of manufacturing technology for micro-nano surface structures with low reflectivity. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 229(11), 1877–1892 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Colin Tong
    • 1
  1. 1.ChicagoUSA

Personalised recommendations