Advertisement

A Method of Abstractness Ratings for Chinese Concepts

  • Xiaomei Wang
  • Chang Su
  • Yijiang Chen
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 840)

Abstract

As a kind of semantic knowledge of words, abstractness shows the degree of abstraction of a concept. There are many databases rating the concreteness of English words; however, there is only a small amount of research on analyzing the abstractness (or concreteness) of Chinese concepts. In this paper, abstractness ratings are presented for Chinese concepts. Our method is semi-supervised. Concrete and abstract paradigm words are pre-built. The degree of abstractness is calculated by analyzing the semantic similarity of a word with two paradigms. This method also intuitively classifies the concepts into abstract or concrete categories, based on their abstract ratings. Experimental results are reasonable and in line with our cognition.

Keywords

Degree of abstractness Similarity Classification of concepts 

References

  1. 1.
    Spreen, O., Schulz, R.: Parameters of abstraction, meaningfulness, and pronunciability for 329 nouns. J. Verbal Learn. Verbal Behav. 5, 459–468 (1966).  https://doi.org/10.1016/S0022-5371(66)80061-0CrossRefGoogle Scholar
  2. 2.
    Lakoff, G., Johnson, M.: Metaphors we live by. University of Chicago Press, Chicago, Ill [u.a.] (2011).  https://doi.org/10.3366/edinburgh/9780748643158.003.0003
  3. 3.
    Kammann, R., Streeter, L.: Two meanings of word abstractness. J. Verbal Learn. Verbal Behav. 10, 303–306 (1971).  https://doi.org/10.1016/s0022-5371(71)80058-0CrossRefGoogle Scholar
  4. 4.
    Dunn, J.: Modeling abstractness and metaphoricity. Metaphor Symbol 30, 259–289 (2015).  https://doi.org/10.1080/10926488.2015.1074801CrossRefGoogle Scholar
  5. 5.
    Altarriba, J., Bauer, L., Benvenuto, C.: Concreteness, context availability, and imageability ratings and word associations for abstract, concrete, and emotion words. Behav. Res. Methods Instrum. Comput. 31, 578–602 (1999).  https://doi.org/10.3758/bf03200738CrossRefGoogle Scholar
  6. 6.
    McRae, K., Cree, G., Seidenberg, M., Mcnorgan, C.: Semantic feature production norms for a large set of living and nonliving things. Behav. Res. Methods 37, 547–559 (2005).  https://doi.org/10.3758/bf03192726CrossRefGoogle Scholar
  7. 7.
    Tekiroglu, S.S., Özbal, G., Strapparava, C.: Sensicon: an automatically constructed sensorial lexicon. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1511–1521 (2014).  https://doi.org/10.3115/v1/d14-1160
  8. 8.
    Lynott, D., Connell, L.: Modality exclusivity norms for 400 nouns: the relationship between perceptual experience and surface word form. Behav. Res. Methods 45, 516–526 (2012).  https://doi.org/10.3758/s13428-012-0267-0CrossRefGoogle Scholar
  9. 9.
    Brysbaert, M., Warriner, A., Kuperman, V.: Concreteness ratings for 40 thousand generally known English word lemmas. Behav. Res. Methods 46, 904–911 (2013).  https://doi.org/10.3758/s13428-013-0403-5CrossRefGoogle Scholar
  10. 10.
    Changizi, M.: Economically organized hierarchies in WordNet and the Oxford English Dictionary. Cogn. Syst. Res. 9, 214–228 (2008).  https://doi.org/10.1016/j.cogsys.2008.02.001CrossRefGoogle Scholar
  11. 11.
    Xing, X., Zhang, Y., Han, M.: Query difficulty prediction for contextual image retrieval. In: European Conference on Advances in Information Retrieval, pp. 581–585. Springer (2010).  https://doi.org/10.1007/978-3-642-12275-0_52
  12. 12.
    Shutova, E., Teufel, S., Korhonen, A.: Statistical metaphor processing. Comput. Linguist. 39, 301–353 (2013).  https://doi.org/10.1162/coli_a_00124MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hill, F., Reichart, R., Korhonen, A.: Multi-modal models for concrete and abstract concept meaning. Trans. Assoc. Comput. Linguist. 2(1), 285–296 (2014)Google Scholar
  14. 14.
    Huang, X., Zhang, H., Lu, B., et al.: An approach to Chinese metaphor identification based on word abstractness. New Technol. Libr. Inf. Serv. (2015). (in Chinese)Google Scholar
  15. 15.
    Turney, P., Neuman, Y., Cohen, Y.: Literal and metaphorical sense identification through concrete and abstract context. In: Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, pp. 680–690 (2011)Google Scholar
  16. 16.
    Coltheart, M.: The MRC psycholinguistic database. Q. J. Exp. Psychol. 33(4), 497–505 (1981).  https://doi.org/10.1080/14640748108400805CrossRefGoogle Scholar
  17. 17.
    Zhao, H., Qu, W., Zhang F., et al.: Chinese verb metaphor recognition based on machine learning and semantic knowledge. J. Nanjing Normal Univ. (2011). (in Chinese)Google Scholar
  18. 18.
    Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words and phrases and their compositionality, vol. 26, pp. 3111–3119 (2013)Google Scholar
  19. 19.
    Mikolov, T., Chen, K., Corrado, G.: Efficient estimation of word representations in vector space. Comput. Sci. (2013)Google Scholar
  20. 20.
    Keller, J., Gray, M., Givens, J.: A fuzzy K-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. SMC-15, 580–585 (1985).  https://doi.org/10.1109/TSMC.1985.6313426
  21. 21.
    Siegel, S.: Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York (1988).  https://doi.org/10.4135/9781412961288.n273

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Cognitive ScienceXiamen UniversityFujianChina
  2. 2.Department of Computer ScienceXiamen UniversityFujianChina

Personalised recommendations