Advertisement

Radiographic Modalities

  • Ha Son Nguyen
  • Shekar N. Kurpad
Chapter

Abstract

Degenerative cervical myelopathy (DCM) and radiculopathy refer to a host of age-related disorders that can inflict ongoing spinal cord and/or nerve root injury in the cervical spine, causing substantial disability. This term incorporates spondylosis, disc herniation, facet arthropathy, spondylolisthesis, and ligamentous degeneration. To diagnose DCM and radiculopathy, the clinician must rely on the clinical exam as well as advanced radiographic modalities that demonstrate compromise of the neural elements. Conventional MRI has been the imaging modality of choice to confirm the diagnosis of DCM and radiculopathy. However, several studies have noted that signal intensity changes observed via conventional MRI do not convey structural changes within the spinal cord parenchyma. Moreover, findings may not convincingly correspond with disease severity or surgical outcomes in DCM. As such, new advanced MRI techniques have been studied to improve the understanding, diagnosis, and treatment of DCM.

Keywords

Radiographic modalities DCM X-ray CT CT myelography MRI Upright/dynamic MRI Diffusion tensor imaging (DTI) Magnetization transfer Myelin water fraction MR spectroscopy Functional MRI 

References

  1. 1.
    Tetreault L, Goldstein CL, Arnold P, et al. Degenerative cervical myelopathy: a spectrum of related disorders affecting the aging spine. Neurosurgery. 2015;77(Suppl 4):S51–67.CrossRefGoogle Scholar
  2. 2.
    Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG. Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine. 2015;40:E675–93.CrossRefGoogle Scholar
  3. 3.
    Nouri A, Martin A, Tetreault L, et al. MRI analysis of the combined prospectively collected AOSpine North America and International Data: the prevalence and spectrum of pathologies in a global cohort of patients with degenerative cervical myelopathy. Spine. 2017;42:1058–67.CrossRefGoogle Scholar
  4. 4.
    Karadimas SK, Erwin WM, Ely CG, Dettori JR, Fehlings MG. Pathophysiology and natural history of cervical spondylotic myelopathy. Spine. 2013;38:S21–36.CrossRefGoogle Scholar
  5. 5.
    Kalsi-Ryan S, Karadimas SK, Fehlings MG. Cervical spondylotic myelopathy. Neuroscientist. 2012;19:409–21.CrossRefGoogle Scholar
  6. 6.
    Nouri A, Martin AR, Mikulis D, Fehlings MG. Magnetic resonance imaging assessment of degenerative cervical myelopathy: a review of structural changes and measurement techniques. Neurosurg Focus. 2016;40:E5.CrossRefGoogle Scholar
  7. 7.
    Wada E, Ohmura M, Yonenobu K. Intramedullary changes of the spinal cord in cervical spondylotic myelopathy. Spine. 1995;20:2226–32.CrossRefGoogle Scholar
  8. 8.
    Tetreault LA, Dettori JR, Wilson JR, et al. Systematic review of magnetic resonance imaging characteristics that affect treatment decision making and predict clinical outcome in patients with cervical spondylotic myelopathy. Spine. 2013;38:S89–110.CrossRefGoogle Scholar
  9. 9.
    Nasir S, Mahmud R, Hussain M, Min D, Shuang-ming S. Flexion/extension cervical spine views in blunt cervical trauma. Chin J Traumatol. 2012;15:166–9.PubMedGoogle Scholar
  10. 10.
    Khan SN, Erickson G, Sena MJ, Gupta MC. Use of flexion and extension radiographs of the cervical spine to rule out acute instability in patients with negative computed tomography scans. J Orthop Trauma. 2011;25:51–6.CrossRefGoogle Scholar
  11. 11.
    White AP, Biswas D, Smart LR, Haims A, Grauer JN. Utility of flexion-extension radiographs in evaluating the degenerative cervical spine. Spine. 2007;32:975–9.CrossRefGoogle Scholar
  12. 12.
    Berberat J, Grobholz R, Boxheimer L, Rogers S, Remonda L, Roelcke U. Differentiation between calcification and hemorrhage in brain tumors using susceptibility-weighted imaging: a pilot study. AJR Am J Roentgenol. 2014;202:847–50.CrossRefGoogle Scholar
  13. 13.
    Sarva RP, Farivar S, Fromm H, Poller W. Study of the sensitivity and specificity of computerized tomography in the detection of calcified gallstones which appears radiolucent by conventional roentgenography. Gastrointest Radiol. 1981;6:165–7.CrossRefGoogle Scholar
  14. 14.
    Middleton WD, Thorsen MK, Lawson TL, Foley WD. False-positive CT diagnosis of gallstones due to thickening of the gallbladder wall. AJR Am J Roentgenol. 1987;149:941–4.CrossRefGoogle Scholar
  15. 15.
    Pham PH, Rao DS, Vasunilashorn F, Fishbein MC, Goldin JG. Computed tomography calcium quantification as a measure of atherosclerotic plaque morphology and stability. Investig Radiol. 2006;41:674–80.CrossRefGoogle Scholar
  16. 16.
    Otake S, Matsuo M, Nishizawa S, Sano A, Kuroda Y. Ossification of the posterior longitudinal ligament: MR evaluation. AJNR Am J Neuroradiol. 1992;13:1059–67; discussion 1068–1070.PubMedGoogle Scholar
  17. 17.
    Yamashita Y, Takahashi M, Matsuno Y, et al. Spinal cord compression due to ossification of ligaments: MR imaging. Radiology. 1990;175:843–8.CrossRefGoogle Scholar
  18. 18.
    Wong J, Leung O, Yuen M. Questionable adequacy of magnetic resonance for the detection of ossification of the posterior longitudinal ligament of the cervical spine. Hong Kong J Radiol. 2011;14:78–83.Google Scholar
  19. 19.
    Houser OW, Onofrio BM, Miller GM, Folger WN, Smith PL. Cervical spondylotic stenosis and myelopathy: evaluation with computed tomographic myelography. Mayo Clin Proc. 1994;69:557–63.CrossRefGoogle Scholar
  20. 20.
    Shafaie FF, Wippold FJ 2nd, Gado M, Pilgram TK, Riew KD. Comparison of computed tomography myelography and magnetic resonance imaging in the evaluation of cervical spondylotic myelopathy and radiculopathy. Spine. 1999;24:1781–5.CrossRefGoogle Scholar
  21. 21.
    Song KJ, Choi BW, Kim GH, Kim JR. Clinical usefulness of CT-myelogram comparing with the MRI in degenerative cervical spinal disorders: is CTM still useful for primary diagnostic tool? J Spinal Disord Tech. 2009;22:353–7.CrossRefGoogle Scholar
  22. 22.
    Enders J, Rief M, Zimmermann E, et al. High-field open versus short-bore magnetic resonance imaging of the spine: a randomized controlled comparison of image quality. PLoS One. 2014;8:e83427.CrossRefGoogle Scholar
  23. 23.
    Gilbert JW, Wheeler GR, Lingreen RA, Johnson RR. Open stand-up MRI: a new instrument for positional neuroimaging. J Spinal Disord Tech. 2006;19:151–4.CrossRefGoogle Scholar
  24. 24.
    Sohn HM, You JW, Lee JY. The relationship between disc degeneration and morphologic changes in the intervertebral foramen of the cervical spine: a cadaveric MRI and CT study. J Korean Med Sci. 2004;19:101–6.CrossRefGoogle Scholar
  25. 25.
    Yoo JU, Zou D, Edwards WT, Bayley J, Yuan HA. Effect of cervical spine motion on the neuroforaminal dimensions of human cervical spine. Spine. 1992;17:1131–6.CrossRefGoogle Scholar
  26. 26.
    Hughes TB Jr, Richman JD, Rothfus WE. Diagnosis of Os odontoideum using kinematic magnetic resonance imaging. A case report. Spine. 1999;24:715–8.CrossRefGoogle Scholar
  27. 27.
    Muhle C, Weinert D, Falliner A, et al. Dynamic changes of the spinal canal in patients with cervical spondylosis at flexion and extension using magnetic resonance imaging. Investig Radiol. 1998;33:444–9.CrossRefGoogle Scholar
  28. 28.
    Muhle C, Wiskirchen J, Weinert D, et al. Biomechanical aspects of the subarachnoid space and cervical cord in healthy individuals examined with kinematic magnetic resonance imaging. Spine. 1998;23:556–67.CrossRefGoogle Scholar
  29. 29.
    Vives MJ, Harris C, Reiter MF, Drzala M. Use of stand-up magnetic resonance imaging for evaluation of a cervicothoracic injury in a patient with ankylosing spondylitis. Spine J. 2008;8:678–82.CrossRefGoogle Scholar
  30. 30.
    Suzuki F, Fukami T, Tsuji A, Takagi K, Matsuda M. Discrepancies of MRI findings between recumbent and upright positions in atlantoaxial lesion. Report of two cases. Eur Spine J. 2008;17(Suppl 2):S304–7.CrossRefGoogle Scholar
  31. 31.
    Gilbert JW, Wheeler GR, Lingreen RA, et al. Imaging in the position that causes pain. Surg Neurol. 2008;69:463–5; discussion 465.CrossRefGoogle Scholar
  32. 32.
    Jinkins JR, Dworkin JS, Damadian RV. Upright, weight-bearing, dynamic-kinetic MRI of the spine: initial results. Eur Radiol. 2005;15:1815–25.CrossRefGoogle Scholar
  33. 33.
    Janssen M, Nabih A, Moussa W, Kawchuk GN, Carey JP. Evaluation of diagnosis techniques used for spinal injury related back pain. Pain Res Treat. 2011;2011:478798.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Muhle C, Resnick D, Ahn JM, Sudmeyer M, Heller M. In vivo changes in the neuroforaminal size at flexion-extension and axial rotation of the cervical spine in healthy persons examined using kinematic magnetic resonance imaging. Spine. 2001;26:E287–93.CrossRefGoogle Scholar
  35. 35.
    Muhle C, Bischoff L, Weinert D, et al. Exacerbated pain in cervical radiculopathy at axial rotation, flexion, extension, and coupled motions of the cervical spine: evaluation by kinematic magnetic resonance imaging. Investig Radiol. 1998;33:279–88.CrossRefGoogle Scholar
  36. 36.
    Ferreiro Perez A, Garcia Isidro M, Ayerbe E, Castedo J, Jinkins JR. Evaluation of intervertebral disc herniation and hypermobile intersegmental instability in symptomatic adult patients undergoing recumbent and upright MRI of the cervical or lumbosacral spines. Eur J Radiol. 2007;62:444–8.CrossRefGoogle Scholar
  37. 37.
    Kato F, Yukawa Y, Suda K, Yamagata M, Ueta T. Normal morphology, age-related changes and abnormal findings of the cervical spine. Part II: magnetic resonance imaging of over 1,200 asymptomatic subjects. Eur Spine J. 2012;21:1499–507.CrossRefGoogle Scholar
  38. 38.
    Ulbrich EJ, Schraner C, Boesch C, et al. Normative MR cervical spinal canal dimensions. Radiology. 2013;271:172–82.CrossRefGoogle Scholar
  39. 39.
    Matsumoto M, Fujimura Y, Suzuki N, et al. MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg. 1998;80:19–24.CrossRefGoogle Scholar
  40. 40.
    Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166:193–9.CrossRefGoogle Scholar
  41. 41.
    Mann E, Peterson CK, Hodler J. Degenerative marrow (modic) changes on cervical spine magnetic resonance imaging scans: prevalence, inter- and intra-examiner reliability and link to disc herniation. Spine. 2011;36:1081–5.CrossRefGoogle Scholar
  42. 42.
    Hayashi T, Daubs MD, Suzuki A, Phan K, Shiba K, Wang JC. Effect of Modic changes on spinal canal stenosis and segmental motion in cervical spine. Eur Spine J. 2014;23:1737–42.CrossRefGoogle Scholar
  43. 43.
    Tong T, Gao XD, Li J, et al. Do modic changes affect cervical sagittal alignment and motion in symptomatic patients? Eur Spine J. 2017;26:1945–52.CrossRefGoogle Scholar
  44. 44.
    Inamasu J, Guiot BH, Sachs DC. Ossification of the posterior longitudinal ligament: an update on its biology, epidemiology, and natural history. Neurosurgery. 2006;58:1027–39; discussion 1027–1039.CrossRefGoogle Scholar
  45. 45.
    Fujiwara K, Yonenobu K, Hiroshima K, Ebara S, Yamashita K, Ono K. Morphometry of the cervical spinal cord and its relation to pathology in cases with compression myelopathy. Spine. 1988;13:1212–6.CrossRefGoogle Scholar
  46. 46.
    Okada Y, Ikata T, Yamada H, Sakamoto R, Katoh S. Magnetic resonance imaging study on the results of surgery for cervical compression myelopathy. Spine. 1993;18:2024–9.CrossRefGoogle Scholar
  47. 47.
    Fehlings MG, Rao SC, Tator CH, et al. The optimal radiologic method for assessing spinal canal compromise and cord compression in patients with cervical spinal cord injury. Part II: results of a multicenter study. Spine. 1999;24:605–13.CrossRefGoogle Scholar
  48. 48.
    Ernst CW, Stadnik TW, Peeters E, Breucq C, Osteaux MJ. Prevalence of annular tears and disc herniations on MR images of the cervical spine in symptom free volunteers. Eur J Radiol. 2005;55:409–14.CrossRefGoogle Scholar
  49. 49.
    Mastronardi L, Elsawaf A, Roperto R, et al. Prognostic relevance of the postoperative evolution of intramedullary spinal cord changes in signal intensity on magnetic resonance imaging after anterior decompression for cervical spondylotic myelopathy. J Neurosurg Spine. 2007;7:615–22.CrossRefGoogle Scholar
  50. 50.
    Arvin B, Kalsi-Ryan S, Karpova A, et al. Postoperative magnetic resonance imaging can predict neurological recovery after surgery for cervical spondylotic myelopathy: a prospective study with blinded assessments. Neurosurgery. 2011;69:362–8.CrossRefGoogle Scholar
  51. 51.
    Vedantam A, Rajshekhar V. Does the type of T2-weighted hyperintensity influence surgical outcome in patients with cervical spondylotic myelopathy? A review. Eur spine J. 2013;22:96–106.CrossRefGoogle Scholar
  52. 52.
    Alafifi T, Kern R, Fehlings M. Clinical and MRI predictors of outcome after surgical intervention for cervical spondylotic myelopathy. J Neuroimaging. 2007;17:315–22.CrossRefGoogle Scholar
  53. 53.
    Arvin B, Kalsi-Ryan S, Mercier D, Furlan JC, Massicotte EM, Fehlings MG. Preoperative magnetic resonance imaging is associated with baseline neurological status and can predict postoperative recovery in patients with cervical spondylotic myelopathy. Spine. 2013;38:1170–6.CrossRefGoogle Scholar
  54. 54.
    Morio Y, Teshima R, Nagashima H, Nawata K, Yamasaki D, Nanjo Y. Correlation between operative outcomes of cervical compression myelopathy and mri of the spinal cord. Spine. 2001;26:1238–45.CrossRefGoogle Scholar
  55. 55.
    Mizuno J, Nakagawa H, Inoue T, Hashizume Y. Clinicopathological study of “snake-eye appearance” in compressive myelopathy of the cervical spinal cord. J Neurosurg Spine. 2003;99:162–8.CrossRefGoogle Scholar
  56. 56.
    Wilson JR, Barry S, Fischer DJ, et al. Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/or ossification of the posterior longitudinal ligament. Spine. 2013;38:S37–54.CrossRefGoogle Scholar
  57. 57.
    Bednarik J, Kadanka Z, Dusek L, et al. Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur Spine J. 2008;17:421–31.CrossRefGoogle Scholar
  58. 58.
    Suri A, Chabbra RPS, Mehta VS, Gaikwad S, Pandey RM. Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J. 2003;3:33–45.CrossRefGoogle Scholar
  59. 59.
    Nouri A, Tetreault L, Zamorano JJ, et al. Role of magnetic resonance imaging in predicting surgical outcome in patients with cervical spondylotic myelopathy. Spine. 2015;40:171–8.CrossRefGoogle Scholar
  60. 60.
    Rindler RS, Chokshi FH, Malcolm JG, et al. Spinal diffusion tensor imaging in evaluation of preoperative and postoperative severity of cervical spondylotic myelopathy: systematic review of literature. World Neurosurg. 2017;99:150–8.CrossRefGoogle Scholar
  61. 61.
    Koskinen E, Brander A, Hakulinen U, et al. Assessing the state of chronic spinal cord injury using diffusion tensor imaging. J Neurotrauma. 2013;30:1587–95.CrossRefGoogle Scholar
  62. 62.
    Li X, Cui JL, Mak KC, Luk KD, Hu Y. Potential use of diffusion tensor imaging in level diagnosis of multilevel cervical spondylotic myelopathy. Spine. 2014;39:E615–22.CrossRefGoogle Scholar
  63. 63.
    Cui JL, Li X, Chan TY, Mak KC, Luk KD, Hu Y. Quantitative assessment of column-specific degeneration in cervical spondylotic myelopathy based on diffusion tensor tractography. Eur Spine J. 2015;24:41–7.CrossRefGoogle Scholar
  64. 64.
    Maki S, Koda M, Ota M, et al. Reduced field-of-view diffusion tensor imaging of the spinal cord shows motor dysfunction of the lower extremities in patients with cervical compression myelopathy. Spine. 2018;43(2):89–96.CrossRefGoogle Scholar
  65. 65.
    Martin AR, De Leener B, Cohen-Adad J, et al. 163 microstructural MRI quantifies tract-specific injury and correlates with global disability and focal neurological deficits in degenerative cervical myelopathy. Neurosurgery. 2016;63(Suppl 1):165.CrossRefGoogle Scholar
  66. 66.
    Martin AR, Aleksanderek I, Cohen-Adad J, et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage Clin. 2016;10:192–238.CrossRefGoogle Scholar
  67. 67.
    Lema A, Bishop C, Malik O, et al. A comparison of magnetization transfer methods to assess brain and cervical cord microstructure in multiple sclerosis. J Neuroimaging. 2017;27:221–6.CrossRefGoogle Scholar
  68. 68.
    Liu H, MacMillian EL, Jutzeler CR, et al. Assessing structure and function of myelin in cervical spondylotic myelopathy: evidence of demyelination. Neurology. 2017;89:602–10.CrossRefGoogle Scholar
  69. 69.
    Holly LT, Freitas B, McArthur DL, Salamon N. Proton magnetic resonance spectroscopy to evaluate spinal cord axonal injury in cervical spondylotic myelopathy. J Neurosurg Spine. 2009;10:194–200.CrossRefGoogle Scholar
  70. 70.
    Taha Ali TF, Badawy AE. Feasibility of 1H-MR spectroscopy in evaluation of cervical spondylotic myelopathy. Egypt J Radiol Nucl Med. 2013;44:93–9.CrossRefGoogle Scholar
  71. 71.
    Salamon N, Ellingson BM, Nagarajan R, Gebara N, Thomas A, Holly LT. Proton magnetic resonance spectroscopy of human cervical spondylosis at 3T. Spinal Cord. 2013;51:558–63.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurological SurgeryMedical College of WisconsinMilwaukeeUSA

Personalised recommendations