Advertisement

Pathobiology of Cervical Radiculopathy and Myelopathy

  • Cory J. Hartman
  • Daniel J. HohEmail author
Chapter

Abstract

Symptomatic cervical spine pathology commonly presents with findings of radiculopathy and/or myelopathy. The underlying pathobiologic mechanism for radiculopathy and myelopathy is often multifactorial. Radiculopathy is the motor and/or sensory manifestation of neurologic dysfunction in the distribution of a given cervical nerve root. This can be due to static mechanical or dynamic compression of the nerve or secondary to biochemical factors. There are characteristic clinical symptoms and exam findings in cervical radiculopathy that correspond to specific cervical nerve roots. Myelopathy is the involvement of upper motor neuron and sensory impairment and can include long ascending and descending spinal tracts as well as multiple spinal root levels. Myelopathy can also be secondary to static mechanical or dynamic compression of the nerve. Additionally, vascular ischemia and stretch and shear forces have been implicated in myelopathy. The characteristic clinical presentation is often defined by loss of coordination, sensory dysfunction, hyperreflexia, and in severe cases weakness and bowel or bladder incontinence.

Keywords

Cervical radiculopathy Cervical myelopathy Cervical spondylosis Cervical stenosis Cervical degenerative disc 

References

  1. 1.
    al-Mefty O, Harkey HL, Marawi I, Haines DE, Peeler DF, Wilner HI, et al. Experimental chronic compressive cervical myelopathy. J Neurosurg. 1993;79(4):550–61.  https://doi.org/10.3171/jns.1993.79.4.0550.CrossRefPubMedGoogle Scholar
  2. 2.
    Arnold JG Jr. The clinical manifestations of spondylochondrosis (spondylosis) of the cervical spine. Ann Surg. 1955;141(6):872–89.CrossRefGoogle Scholar
  3. 3.
    Baptiste DC, Fehlings MG. Pathophysiology of cervical myelopathy. Spine J. 2006;6(6 Suppl):190S–7S.CrossRefGoogle Scholar
  4. 4.
    Baron EM, Young WF. Cervical spondylotic myelopathy: a brief review of its pathophysiology, clinical course, and diagnosis. Neurosurgery. 2007;60(1 Supp1 1):S35–41.  https://doi.org/10.1227/01.NEU.0000215383.64386.82.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bilston LE, Thibault LE. The mechanical properties of the human cervical spinal cord in vitro. Ann Biomed Eng. 1996;24(1):67–74.PubMedGoogle Scholar
  6. 6.
    Blight AR. Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Cent Nerv Syst Trauma. 1985;2(4):299–315.  https://doi.org/10.1089/cns.1985.2.299.CrossRefPubMedGoogle Scholar
  7. 7.
    Bohlman HH, Emery SE. The pathophysiology of cervical spondylosis and myelopathy. Spine. 1988;13(7):843–6.CrossRefGoogle Scholar
  8. 8.
    Burke JG, Watson WG, McCormack D, Dowling FE, Walsh MG, Fitspatrick JM. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J Bone Joint Surg. 2002;84-B(2):196–201.CrossRefGoogle Scholar
  9. 9.
    Chen CJ, Hsu HL, Niu CC, Chen TY, Chen MC, Tseng YC, et al. Cervical degenerative disease at flexion-extension MR imaging: prediction criteria. Radiology. 2003;227(1):136–42.  https://doi.org/10.1148/radiol.2271020116.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen IH, Liao KK, Shen WY. Measurement of cervical canal sagittal diameter in chinese males with cervical spondylotic myelopathy. Zhonghua Yi Xue Za Zhi (Taipei). 1994;54(2):105–10.Google Scholar
  11. 11.
    Chen IH, Vasavada A, Panjabi MM. Kinematics of the cervical spine canal: changes with sagittal plane loads. J Spinal Disord. 1994;7(2):93–101.CrossRefGoogle Scholar
  12. 12.
    Coughlin TA, Klezl Z. Focus on cervical myelopathy. Br Ed Soc Bone Joint Surg. 2012:1–7.Google Scholar
  13. 13.
    Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med. 1997;3(1):73–6.CrossRefGoogle Scholar
  14. 14.
    Dolan RT, Butler JS, O'Byrne JM, Poynton AR. Mechanical and cellular processes driving cervical myelopathy. World J Orthop. 2016;7(1):20–9.  https://doi.org/10.5312/wjo.v7.i1.20.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Doppman JL. The mechanism of ischemia in anteroposterior compression of the spinal cord 1975. Invest Radiol. 1990;25(4):444–52.CrossRefGoogle Scholar
  16. 16.
    Fukui S, Ohseto K, Shiotani M, Ohno K, Karasawa H, Nganuma Y, Yuda Y. Referred pain distribution of the cervical zygapophyseal joints and cervical dorsal rami. Pain. 1996;68:79–83.CrossRefGoogle Scholar
  17. 17.
    Good DC, Couch JR, Wacaser L. “Numb, clumsy hands” and high cervical spondylosis. Surg Neurol. 1984;22(3):285–91.CrossRefGoogle Scholar
  18. 18.
    Gooding MR, Wilson CB, Hoff JT. Experimental cervical myelopathy. Effects of ischemia and compression of the canine cervical spinal cord. J Neurosurg. 1975;43(1):9–17.  https://doi.org/10.3171/jns.1975.43.1.0009.CrossRefPubMedGoogle Scholar
  19. 19.
    Henderson FC, Geddes JF, Vaccaro AR, Woodard E, Berry KJ, Benzel EC. Stretch-associated injury in cervical spondylotic myelopathy: new concept and review. Neurosurgery. 2005;56(5):1101–13. discussion 1101-13.PubMedGoogle Scholar
  20. 20.
    Henderson CM, Hennessy RG, Shuey HM Jr, Shackelfor EG. Posterior-lateral foraminotomy as an exclusive operative technique for cervical radiculopathy: a review of 846 consecutively operated cases. Neurosurgery. 1983;12:504–12.CrossRefGoogle Scholar
  21. 21.
    Hoff JT, Wilson CB. The pathophysiology of cervical spondylotic radiculopathy and myelopathy. Clin Neurosurg. 1977;24:474–87.CrossRefGoogle Scholar
  22. 22.
    Ichihara K, Taguchi T, Sakuramoto I, Kawano S, Kawai S. Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and gray matter. J Neurosurg. 2003;99(3 Suppl):278–85.PubMedGoogle Scholar
  23. 23.
    Irvine DH, Foster JB, Newell DJ, Klukvin BN. Prevalence of cervical spondylosis in a general practice. Lancet. 1965;1(7395):1089–92.CrossRefGoogle Scholar
  24. 24.
    Jancalek R, Dubovy P. An experimental animal model of spinal root compression syndrome: an analysis of morphological changes of myelinated axons during compression radiculopathy and after decompression. Exp Brain Res. 2007;179(1):111–9.  https://doi.org/10.1007/s00221-006-0771-5.CrossRefPubMedGoogle Scholar
  25. 25.
    Kalsi-Ryan S, Karadimas SK, Fehlings MG. Cervical spondylotic myelopathy: the clinical phenomenon and the current pathobiology of an increasingly prevalent and devastating disorder. Neuroscientist. 2013;19(4):409–21.  https://doi.org/10.1177/1073858412467377.CrossRefPubMedGoogle Scholar
  26. 26.
    Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Evans CH. Herniated cervical intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine. 1995;20(22):2373–8.CrossRefGoogle Scholar
  27. 27.
    Karadimas SK, Gatzounis G, Fehlings MG. Pathobiology of cervical spondylotic myelopathy. Eur Spine J. 2015;24(Suppl 2):132–8.  https://doi.org/10.1007/s00586-014-3264-4.CrossRefPubMedGoogle Scholar
  28. 28.
    Karadimas SK, Gialeli CH, Klironomos G, Tzanakakis GN, Panagiotopoulos E, Karamanos NK, et al. The role of oligodendrocytes in the molecular pathobiology and potential molecular treatment of cervical spondylotic myelopathy. Curr Med Chem. 2010;17(11):1048–58. BSP/CMC/E-Pub/065 [pii].CrossRefGoogle Scholar
  29. 29.
    Karadimas SK, Moon ES, Yu WR, Satkunendrarajah K, Kallitsis JK, Gatzounis G, et al. A novel experimental model of cervical spondylotic myelopathy (CSM) to facilitate translational research. Neurobiol Dis. 2013;54:43–58.  https://doi.org/10.1016/j.nbd.2013.02.013.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim HJ, Nemani VM, Riew KD, Brasington R. Cervical spine disease in rheumatoid arthritis: incidence, manifestations, and therapy. Curr Rheumatol Rep. 2015;17(2):9-014-0486-8.  https://doi.org/10.1007/s11926-014-0486-8.CrossRefGoogle Scholar
  31. 31.
    Loy DN, Crawford CH, Darnall JB, Burke DA, Onifer SM, Whittemore SR. Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat. J Comp Neurol. 2002;445(4):308–24.  https://doi.org/10.1002/cne.10168. [pii]CrossRefPubMedGoogle Scholar
  32. 32.
    Mercer S, Bogduk N. The ligaments and annulus fibrosus of human adult cervical intervertebral discs. Spine. 1999;24:619–28.CrossRefGoogle Scholar
  33. 33.
    Murphy F, Simmons JC, Brunson B. Surgical treatment of laterally ruptured cervical discs: review of 648 cases—1939-1972. J Neurosurg. 1973;38:679–83.CrossRefGoogle Scholar
  34. 34.
    Payne EE, Spillane JD. The cervical spine; an anatomico-pathological study of 70 specimens (using a special technique) with particular reference to the problem of cervical spondylosis. Brain. 1957;80(4):571–96.CrossRefGoogle Scholar
  35. 35.
    Penning L. Some aspects of plain radiography of the cervical spine in chronic myelopathy. Neurology. 1962;12:513–9.CrossRefGoogle Scholar
  36. 36.
    Radhakrishnan K, Litchy WJ, O'Fallon WM, Kurland LT. Epidemiology of cervical radiculopathy. A population-based study from rochester, minnesota, 1976 through 1990. Brain. 1994;117(Pt 2):325–35.CrossRefGoogle Scholar
  37. 37.
    Rhee JM, Yoon T, Riew KD. Cervical radiculopathy. J Am Acad Orthop Surg. 2007;15(8):486–94. 15/8/486 [pii]CrossRefGoogle Scholar
  38. 38.
    Roth D, Mukai A, Thomas P, Hudgins TH, Alleva JT. Cervical radiculopathy. Dis Mon. 2009;55(12):737–56.  https://doi.org/10.1016/j.disamonth.2009.06.004.CrossRefPubMedGoogle Scholar
  39. 39.
    Schoenfeld AJ, George AA, Bader JO, Caram PM Jr. Incidence and epidemiology of cervical radiculopathy in the United States military: 2000 to 2009. J Spinal Disord Tech. 2012;25(1):17–22.  https://doi.org/10.1097/BSD.0b013e31820d77ea.CrossRefPubMedGoogle Scholar
  40. 40.
    Shelerud RA, Paynter KS. Rarer causes of radiculopathy: spinal tumors, infections, and other unusual causes. Phys Med Rehabil Clin N Am. 2002;13(3):645–96.CrossRefGoogle Scholar
  41. 41.
    Shi R, Pryor JD. Pathological changes of isolated spinal cord axons in response to mechanical stretch. Neuroscience. 2002;110(4):765–77. S0306452201005966 [pii].CrossRefGoogle Scholar
  42. 42.
    Singh A, Tetreault L, Fehlings MG, Fischer DJ, Skelly AC. Risk factors for development of cervical spondylotic myelopathy: results of a systematic review. Evid Based Spine Care J. 2012;3(3):35–42.  https://doi.org/10.1055/s-0032-1327808.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Slipman CW, Plastaras C, Patel R, Isaac Z, Chow D, Garvan C, Pauza K, Furman M. Provocative cervical discography symptom mapping. Spine J. 2005;5:381–8.CrossRefGoogle Scholar
  44. 44.
    Song XJ, Hu SJ, Greenquist KW, Zhang JM, LaMotte RH. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol. 1999;82(6):3347–58.CrossRefGoogle Scholar
  45. 45.
    Stookey B. Compression of the spinal cord due to ventral extradural cervical chondromas. Arch Neurol Psychiatr. 1928;20:275–91.CrossRefGoogle Scholar
  46. 46.
    Sung JY, Tani J, Hung KS, Lui TN, Lin CS. Sensory axonal dysfunction in cervical radiculopathy. J Neurol Neurosurg Psychiatry. 2015;86(6):640–5.  https://doi.org/10.1136/jnnp-2014-308088.CrossRefPubMedGoogle Scholar
  47. 47.
    Swagerty DL Jr. Cervical spondylotic myelopathy: a cause of gait disturbance and falls in the elderly. Kans Med. 1994;95(10):226–7. 229PubMedGoogle Scholar
  48. 48.
    Takamiya Y, Nagata K, Fukuda K, Shibata A, Ishitake T, Suenaga T. Cervical spine disorders in farm workers requiring neck extension actions. J Orthop Sci. 2006;11(3):235–40.  https://doi.org/10.1007/s00776-006-1005-1.CrossRefPubMedGoogle Scholar
  49. 49.
    Taylor AR. Mechanism and treatment of spinal-cord disorders associated with cervical spondylosis. Lancet. 1953;1(6763):717–20.CrossRefGoogle Scholar
  50. 50.
    Van Boxem K, Huntoon M, Van Zundert J, Patijn J, van Kleef M, Joosten EA. Pulsed radiofrequency: a review of the basic science as applied to the pathophysiology of radicular pain: a call for clinical translation. Reg Anesth Pain Med. 2014;39(2):149–59.  https://doi.org/10.1097/AAP.0000000000000063.CrossRefPubMedGoogle Scholar
  51. 51.
    Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol. 1997;121(3):417–24.  https://doi.org/10.1038/sj.bjp.0701148.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Yabuki S, Kikuchi S, Olmarker K, Myers RR. Acute effects of nucleus pulposus on blood flow and endoneurial fluid pressure in rat dorsal root ganglia. Spine. 1998;23(23):2517–23.CrossRefGoogle Scholar
  53. 53.
    Yoshizawa H, Kobayashi S, Morita T. Chronic nerve root compression. Pathophysiologic mechanism of nerve root dysfunction. Spine. 1995;20(4):397–407.CrossRefGoogle Scholar
  54. 54.
    Yoss RE, Kendall BC, MacCarthy CS, Love JG. Significance of symptoms and signs in localization of involved root in cervical disk protusion. Neurology. 1957;7:673–81.CrossRefGoogle Scholar
  55. 55.
    Young WB. The clinical diagnosis of myelopathy. Semin Ultrasound CT MR. 1994;15(3):250–4.CrossRefGoogle Scholar
  56. 56.
    Yu WR, Baptiste DC, Liu T, Odrobina E, Stanisz G, Fehlings M. Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy. Neurobiol Dis. 2009;33:149–63.CrossRefGoogle Scholar
  57. 57.
    Yuan Q, Dougherty L, Margulies SS. In vivo human cervical spinal cord deformation and displacement in flexion. Spine. 1998;23(15):1677–83.CrossRefGoogle Scholar
  58. 58.
    Yue WM, Tan SB, Tan MH, Koh DC, Tan CT. The torg–pavlov ratio in cervical spondylotic myelopathy: a comparative study between patients with cervical spondylotic myelopathy and a nonspondylotic, nonmyelopathic population. Spine. 2001;26(16):1760–4.CrossRefGoogle Scholar
  59. 59.
    Zhang JM, Song XJ, LaMotte RH. Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol. 1999;82(6):3359–66.CrossRefGoogle Scholar
  60. 60.
    Zhuang HM, Xu GT, Wen SF, Guo YY, Huang Q. Altered expression of metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in cervical disc herniation patients. Genet Mol Res. 2016;15(2)  https://doi.org/10.4238/gmr.15027594.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity of FloridaGainesvilleUSA

Personalised recommendations