Advertisement

Degenerative Cervical Myelopathy: A Spectrum of Degenerative Spondylopathies

  • Aria Nouri
  • Jean-Christophe Murray
  • Michael G. FehlingsEmail author
Chapter

Abstract

Degenerative cervical myelopathy (DCM) is an overarching term that describes the various age-related and progressive changes of intervertebral discs, ligaments, and vertebrae, which result in spinal cord impairment through static and dynamic injury mechanisms. At the present time, there remain a large number of ICD-10 codes that describe conditions that may fall under DCM. The term DCM was recently introduced with the growing recognition that these patients present with a constellation of the aforementioned anatomical changes and that previous diagnostic delineation within this group had not been clear in the literature. These factors have ultimately impeded knowledge dissemination and have resulted in under-recognition of the collective importance of this spectrum of disorders in the healthcare community. Following the introduction of the term, a guideline development for the management of patients with DCM, with sponsorship from the Cervical Spine Research Society and AOSpine, has been formulated. Previous guidelines by AANS/CNS focused on the surgical management of cervical spondylotic myelopathy and were published in 2009. However, these guidelines have been somewhat outdated given the recent introduction of the term DCM and publication of prospective and multicenter studies on the surgical management of DCM. The AANS/CNS spine section guidelines are slated to be updated in 2019.

Keywords

DCM Cervical Spinal Genetic Myelopathy Spine Compression Degenerative 

References

  1. 1.
    Al-Jarallah K, Al-Saeed O, Shehab D, Dashti K, Sheikh M. Ossification of ligamentum flavum in Middle East Arabs: a hospital-based study. Med Princ Pract. 2012;21:529–33.CrossRefGoogle Scholar
  2. 2.
    Ali FE, Al-Bustan MA, Al-Busairi WA, Al-Mulla FA, Esbaita EY. Cervical spine abnormalities associated with down syndrome. Int Orthop. 2006;30:284–9.CrossRefGoogle Scholar
  3. 3.
    Ames CP, Blondel B, Scheer JK, Schwab FJ, Le Huec JC, Massicotte EM, Patel AA, Traynelis VC, Kim HJ, Shaffrey CI, Smith JS, Lafage V. Cervical radiographical alignment: comprehensive assessment techniques and potential importance in cervical myelopathy. Spine (Phila Pa 1976). 2013;38:S149–60.CrossRefGoogle Scholar
  4. 4.
    An HS, Al-Shihabi L, Kurd M. Surgical treatment for ossification of the posterior longitudinal ligament in the cervical spine. J Am Acad Orthop Surg. 2014;22:420–9.CrossRefGoogle Scholar
  5. 5.
    Bajwa NS, Toy JO, Young EY, Ahn NU. Establishment of parameters for congenital stenosis of the cervical spine: an anatomic descriptive analysis of 1,066 cadaveric specimens. Eur Spine J. 2012;21:2467–74.CrossRefGoogle Scholar
  6. 6.
    Baptiste DC, Fehlings MG. Pathophysiology of cervical myelopathy. Spine J. 2006;6:190S–7S.CrossRefGoogle Scholar
  7. 7.
    Barnes MP, Saunders M. The effect of cervical mobility on the natural history of cervical spondylotic myelopathy. J Neurol Neurosurg Psychiatry. 1984;47:17–20.CrossRefGoogle Scholar
  8. 8.
    Bernhardt M, Hynes RA, Blume HW, White AA 3rd. Cervical spondylotic myelopathy. J Bone Joint Surg Am. 1993;75:119–28.CrossRefGoogle Scholar
  9. 9.
    Bosma GP, Van Buchem MA, Voormolen JH, Van Biezen FC, Brouwer OF. Cervical spondylarthrotic myelopathy with early onset in Down's syndrome: five cases and a review of the literature. J Intellect Disabil Res. 1999;43(Pt 4):283–8.CrossRefGoogle Scholar
  10. 10.
    Brown MW, Templeton AW, Hodges FJ 3rd. The incidence of acquired and congenital fusions in the cervical spine. Am J Roentgenol Radium Therapy, Nucl Med. 1964;92:1255–9.Google Scholar
  11. 11.
    Bull J, El Gammal T, Popham M. A possible genetic factor in cervical spondylosis. Br J Radiol. 1969;42:9–16.CrossRefGoogle Scholar
  12. 12.
    Countee RW, Vijayanathan T. Congenital stenosis of the cervical spine: diagnosis and management. J Natl Med Assoc. 1979;71:257–64.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Erwin WM, Fehlings MG. Intervertebral disc degeneration: genes hold the key. World Neurosurg. 2013;80:e131–3.CrossRefGoogle Scholar
  14. 14.
    Fehlings MG, Ibrahim A, Tetreault L, Albanese V, Alvarado M, Arnold P, Barbagallo G, Bartels R, Bolger C, Defino H, Kale S, Massicotte E, Moraes O, Scerrati M, Tan G, Tanaka M, Toyone T, Yukawa Y, Zhou Q, Zileli M, Kopjar B. A global perspective on the outcomes of surgical decompression in patients with cervical spondylotic myelopathy: results from the prospective multicenter AOSpine international study on 479 patients. Spine (Phila Pa 1976). 2015;40:1322–8.CrossRefGoogle Scholar
  15. 15.
    Fehlings MG, Wilson JR, Kopjar B, Yoon ST, Arnold PM, Massicotte EM, Vaccaro AR, Brodke DS, Shaffrey CI, Smith JS, Woodard EJ, Banco RJ, Chapman JR, Janssen ME, Bono CM, Sasso RC, Dekutoski MB, Gokaslan ZL. Efficacy and safety of surgical decompression in patients with cervical spondylotic myelopathy: results of the AOSpine North America prospective multi-center study. J Bone Joint Surg Am. 2013;95:1651–8.CrossRefGoogle Scholar
  16. 16.
    Galbusera F, Van Rijsbergen M, Ito K, Huyghe JM, Brayda-Bruno M, Wilke HJ. Ageing and degenerative changes of the intervertebral disc and their impact on spinal flexibility. Eur Spine J. 2014;23(Suppl 3):S324–32.PubMedGoogle Scholar
  17. 17.
    Giampietro PF, Raggio CL, Blank RD, Mccarty C, Broeckel U, Pickart MA. Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol Syndromol. 2013;4:94–105.PubMedGoogle Scholar
  18. 18.
    Guo JJ, Luk KD, Karppinen J, Yang H, Cheung KM. Prevalence, distribution, and morphology of ossification of the ligamentum flavum: a population study of one thousand seven hundred thirty-six magnetic resonance imaging scans. Spine (Phila Pa 1976). 2010;35:51–6.CrossRefGoogle Scholar
  19. 19.
    Halko GJ, Cobb R, Abeles M. Patients with type IV Ehlers-Danlos syndrome may be predisposed to atlantoaxial subluxation. J Rheumatol. 1995;22:2152–5.PubMedGoogle Scholar
  20. 20.
    Hayashi T, Wang JC, Suzuki A, Takahashi S, Scott TP, Phan K, Lord EL, Ruangchainikom M, Shiba K, Daubs MD. Risk factors for missed dynamic canal stenosis in the cervical spine. Spine (Phila Pa 1976). 2014;39:812–9.CrossRefGoogle Scholar
  21. 21.
    Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am. 1999;81:519–28.CrossRefGoogle Scholar
  22. 22.
    Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J. 2004;4:190S–4S.CrossRefGoogle Scholar
  23. 23.
    Inamasu J, Guiot BH, Sachs DC. Ossification of the posterior longitudinal ligament: an update on its biology, epidemiology, and natural history. Neurosurgery. 2006;58:1027–39. discussion 1027-39CrossRefGoogle Scholar
  24. 24.
    Kalb S, Martirosyan NL, Kalani MY, Broc GG, Theodore N. Genetics of the degenerated intervertebral disc. World Neurosurg. 2012;77:491–501.CrossRefGoogle Scholar
  25. 25.
    Kalsi-Ryan S, Karadimas SK, Fehlings MG. Cervical spondylotic myelopathy: the clinical phenomenon and the current pathobiology of an increasingly prevalent and devastating disorder. Neuroscientist. 2013;19:409–21.CrossRefGoogle Scholar
  26. 26.
    Karadimas SK, Erwin WM, Ely CG, Dettori JR, Fehlings MG. Pathophysiology and natural history of cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2013;38:S21–36.CrossRefGoogle Scholar
  27. 27.
    Karadimas SK, Gatzounis G, Fehlings MG. Pathobiology of cervical spondylotic myelopathy. Eur Spine J. 2015;24(Suppl 2):132–8.CrossRefGoogle Scholar
  28. 28.
    Karadimas SK, Laliberte AM, Tetreault L, Chung YS, Arnold P, Foltz WD, Fehlings MG. Riluzole blocks perioperative ischemia-reperfusion injury and enhances postdecompression outcomes in cervical spondylotic myelopathy. Sci Transl Med. 2015;7:316ra194.CrossRefGoogle Scholar
  29. 29.
    Karadimas SK, Moon ES, Yu WR, Satkunendrarajah K, Kallitsis JK, Gatzounis G, Fehlings MG. A novel experimental model of cervical spondylotic myelopathy (CSM) to facilitate translational research. Neurobiol Dis. 2013;54:43–58.CrossRefGoogle Scholar
  30. 30.
    Kim DH, Jeong YS, Chon J, Yoo SD, Kim HS, Kang SW, Chung JH, Kim KT, Yun DH. Association between interleukin 15 receptor, alpha (IL15RA) polymorphism and Korean patients with ossification of the posterior longitudinal ligament. Cytokine. 2011;55:343–6.CrossRefGoogle Scholar
  31. 31.
    King JA, Vachhrajani S, Drake JM, Rutka JT. Neurosurgical implications of achondroplasia. J Neurosurg Pediatr. 2009;4:297–306.CrossRefGoogle Scholar
  32. 32.
    Kishiya M, Sawada T, Kanemaru K, Kudo H, Numasawa T, Yokoyama T, Tanaka S, Motomura S, Ueyama K, Harata S, Toh S, Furukawa K. A functional RNAi screen for Runx2-regulated genes associated with ectopic bone formation in human spinal ligaments. J Pharmacol Sci. 2008;106:404–14.CrossRefGoogle Scholar
  33. 33.
    Kong Q, Ma X, Li F, Guo Z, Qi Q, Li W, Yuan H, Wang Z, Chen Z. COL6A1 polymorphisms associated with ossification of the ligamentum flavum and ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 2007;32:2834–8.CrossRefGoogle Scholar
  34. 34.
    Kudo H, Furukawa K, Yokoyama T, Ono A, Numasawa T, Wada K, Tanaka S, Asari T, Ueyama K, Motomura S, Toh S. Genetic differences in the osteogenic differentiation potency according to the classification of ossification of the posterior longitudinal ligament of the cervical spine. Spine (Phila Pa 1976). 2011;36:951–7.CrossRefGoogle Scholar
  35. 35.
    Lad SP, Patil CG, Berta S, Santarelli JG, Ho C, Boakye M. National trends in spinal fusion for cervical spondylotic myelopathy. Surg Neurol. 2009;71:66–9. discussion 69CrossRefGoogle Scholar
  36. 36.
    Lebl DR, Bono CM. Update on the diagnosis and management of cervical spondylotic myelopathy. J Am Acad Orthop Surg. 2015;23:648–60.CrossRefGoogle Scholar
  37. 37.
    Lee MJ, Cassinelli EH, Riew KD. Prevalence of cervical spine stenosis. Anatomic study in cadavers. J Bone Joint Surg Am. 2007;89:376–80.CrossRefGoogle Scholar
  38. 38.
    Liu Y, Zhao Y, Chen Y, Shi G, Yuan W. Runx2 polymorphisms associated with OPLL and OLF in the Han population. Clin Orthop Relat Res. 2010;468:3333–41.CrossRefGoogle Scholar
  39. 39.
    Matsunaga S, Kukita M, Hayashi K, Shinkura R, Koriyama C, Sakou T, Komiya S. Pathogenesis of myelopathy in patients with ossification of the posterior longitudinal ligament. J Neurosurg. 2002;96:168–72.PubMedGoogle Scholar
  40. 40.
    Matsunaga S, Sakou T. Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine (Phila Pa 1976). 2012;37:E309–14.CrossRefGoogle Scholar
  41. 41.
    Matsunaga S, Sakou T, Taketomi E, Yamaguchi M, Okano T. The natural course of myelopathy caused by ossification of the posterior longitudinal ligament in the cervical spine. Clin Orthop Relat Res. 1994:168–77.CrossRefGoogle Scholar
  42. 42.
    Matz PG, Anderson PA, Kaiser MG, Holly LT, Groff MW, Heary RF, Mummaneni PV, Ryken TC, Choudhri TF, Vresilovic EJ, Resnick DK. Introduction and methodology: guidelines for the surgical management of cervical degenerative disease. J Neurosurg Spine. 2009;11:101–3.CrossRefGoogle Scholar
  43. 43.
    Mizuno J, Nakagawa H, Hashizume Y. Analysis of hypertrophy of the posterior longitudinal ligament of the cervical spine, on the basis of clinical and experimental studies. Neurosurgery. 2001;49:1091–7; discussion 1097-8.PubMedGoogle Scholar
  44. 44.
    Moon ES, Karadimas SK, Yu WR, Austin JW, Fehlings MG. Riluzole attenuates neuropathic pain and enhances functional recovery in a rodent model of cervical spondylotic myelopathy. Neurobiol Dis. 2014;62:394–406.CrossRefGoogle Scholar
  45. 45.
    Morishita Y, Naito M, Hymanson H, Miyazaki M, Wu G, Wang JC. The relationship between the cervical spinal canal diameter and the pathological changes in the cervical spine. Eur Spine J. 2009;18:877–83.CrossRefGoogle Scholar
  46. 46.
    Nagib MG, Maxwell RE, Chou SN. Identification and management of high-risk patients with Klippel-Feil syndrome. J Neurosurg. 1984;61:523–30.CrossRefGoogle Scholar
  47. 47.
    New PW, Cripps RA, Bonne Lee B. Global maps of non-traumatic spinal cord injury epidemiology: towards a living data repository. Spinal Cord. 2014;52:97–109.CrossRefGoogle Scholar
  48. 48.
    Northover JR, Wild JB, Braybrooke J, Blanco J. The epidemiology of cervical spondylotic myelopathy. Skelet Radiol. 2012;41:1543–6.CrossRefGoogle Scholar
  49. 49.
    Nouri A, Fehlings MG. Diffuse idiopathic skeletal hyperostosis with cervical myelopathy. CMAJ. 2017;189:E410.CrossRefGoogle Scholar
  50. 50.
    Nouri A, Martin AR, Lange SF, Kotter MRN, Mikulis DJ, Fehlings MG. Congenital cervical fusion as a risk factor for development of degenerative cervical myelopathy. World Neurosurg. 2017;100:531–9.CrossRefGoogle Scholar
  51. 51.
    Nouri A, Martin AR, Mikulis D, Fehlings MG. Magnetic resonance imaging assessment of degenerative cervical myelopathy: a review of structural changes and measurement techniques. Neurosurg Focus. 2016;40:E5.CrossRefGoogle Scholar
  52. 52.
    Nouri A, Martin AR, Tetreault L, Nater A, Kato S, Nakashima H, Nagoshi N, Reihani-Kermani H, Fehlings MG. MRI analysis of the combined prospectively collected AOSpine North America and international data: the prevalence and Spectrum of pathologies in a global cohort of patients with degenerative cervical myelopathy. Spine (Phila Pa 1976). 2016;42:1058.CrossRefGoogle Scholar
  53. 53.
    Nouri A, Tetreault L, Nori S, Martin AR, Nater A, Fehlings MG. Congenital Cervical Spine Stenosis in a Multicenter Global Cohort of Patients With Degenerative Cervical Myelopathy: An Ambispective Report Based on a Magnetic Resonance Imaging Diagnostic Criterion. Neurosurgery. 2018;83(3):521–8.CrossRefGoogle Scholar
  54. 54.
    Nouri A, Tetreault L, Singh A, Karadimas S, Fehlings M. Degenerative cervical myelopathy: epidemiology, genetics and pathogenesis. Spine (Phila Pa 1976). 2015;40:E675–93.CrossRefGoogle Scholar
  55. 55.
    Nouri A, Tetreault L, Zamorano JJ, Mohanty CB, Fehlings MG. Prevalence of Klippel-Feil syndrome in a surgical series of patients with cervical Spondylotic myelopathy: analysis of the prospective, multicenter AOSpine North America study. Global Spine J. 2015;5:294–9.CrossRefGoogle Scholar
  56. 56.
    Numasawa T, Koga H, Ueyama K, Maeda S, Sakou T, Harata S, Leppert M, Inoue I. Human retinoic X receptor beta: complete genomic sequence and mutation search for ossification of posterior longitudinal ligament of the spine. J Bone Miner Res. 1999;14:500–8.CrossRefGoogle Scholar
  57. 57.
    Olive PM, Whitecloud TS 3rd, Bennett JT. Lower cervical spondylosis and myelopathy in adults with Down's syndrome. Spine (Phila Pa 1976). 1988;13:781–4.CrossRefGoogle Scholar
  58. 58.
    Ono K, Yonenobu K, Miyamoto S, Okada K. Pathology of ossification of the posterior longitudinal ligament and ligamentum flavum. Clin Orthop Relat Res. 1999;359:18–26.CrossRefGoogle Scholar
  59. 59.
    Palmer PE, Stadalnick R, Arnon S. The genetic factor in cervical spondylosis. Skelet Radiol. 1984;11:178–82.CrossRefGoogle Scholar
  60. 60.
    Park JY, Chin DK, Kim KS, Cho YE. Thoracic ligament ossification in patients with cervical ossification of the posterior longitudinal ligaments: tandem ossification in the cervical and thoracic spine. Spine (Phila Pa 1976). 2008;33:E407–10.CrossRefGoogle Scholar
  61. 61.
    Patel AA, Spiker WR, Daubs M, Brodke DS, Cannon-Albright LA. Evidence of an inherited predisposition for cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2012;37:26–9.CrossRefGoogle Scholar
  62. 62.
    Pavlov H, Torg JS, Robie B, Jahre C. Cervical spinal stenosis: determination with vertebral body ratio method. Radiology. 1987;164:771–5.CrossRefGoogle Scholar
  63. 63.
    Pizzutillo PD, Woods M, Nicholson L, Macewen GD. Risk factors in Klippel-Feil syndrome. Spine (Phila Pa 1976). 1994;19:2110–6.CrossRefGoogle Scholar
  64. 64.
    Ren Y, Feng J, Liu ZZ, Wan H, Li JH, Lin X. A new haplotype in BMP4 implicated in ossification of the posterior longitudinal ligament (OPLL) in a Chinese population. J Orthop Res. 2012;30:748–56.CrossRefGoogle Scholar
  65. 65.
    Rhee JM, Heflin JA, Hamasaki T, Freedman B. Prevalence of physical signs in cervical myelopathy: a prospective, controlled study. Spine (Phila Pa 1976). 2009;34:890–5.CrossRefGoogle Scholar
  66. 66.
    Setzer M, Hermann E, Seifert V, Marquardt G. Apolipoprotein E gene polymorphism and the risk of cervical myelopathy in patients with chronic spinal cord compression. Spine (Phila Pa 1976). 2008;33:497–502.CrossRefGoogle Scholar
  67. 67.
    Shin M, Besser LM, Kucik JE, Lu C, Siffel C, Correa A, Congenital Anomaly Multistate P, Survival C. Prevalence of down syndrome among children and adolescents in 10 regions of the United States. Pediatrics. 2009;124:1565–71.CrossRefGoogle Scholar
  68. 68.
    Stapleton CJ, Pham MH, Attenello FJ, Hsieh PC. Ossification of the posterior longitudinal ligament: genetics and pathophysiology. Neurosurg Focus. 2011;30:E6.CrossRefGoogle Scholar
  69. 69.
    Tanaka T, Ikari K, Furushima K, Okada A, Tanaka H, Furukawa K, Yoshida K, Ikeda T, Ikegawa S, Hunt SC, Takeda J, Toh S, Harata S, Nakajima T, Inoue I. Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet. 2003;73:812–22.CrossRefGoogle Scholar
  70. 70.
    Terayama K. Genetic studies on ossification of the posterior longitudinal ligament of the spine. Spine (Phila Pa 1976). 1989;14:1184–91.CrossRefGoogle Scholar
  71. 71.
    Wang H, Liu D, Yang Z, Tian B, Li J, Meng X, Wang Z, Yang H, Lin X. Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients. Eur Spine J. 2008;17:956–64.CrossRefGoogle Scholar
  72. 72.
    Wang ZC, Chen XS, Wang Da W, Shi JG, Jia LS, Xu GH, Huang JH, Fan L. The genetic association of vitamin D receptor polymorphisms and cervical spondylotic myelopathy in Chinese subjects. Clin Chim Acta. 2010;411:794–7.CrossRefGoogle Scholar
  73. 73.
    Wang ZC, Shi JG, Chen XS, Xu GH, Li LJ, Jia LS. The role of smoking status and collagen IX polymorphisms in the susceptibility to cervical spondylotic myelopathy. Genet Mol Res. 2012;11:1238–44.CrossRefGoogle Scholar
  74. 74.
    Wilson JR, Patel AA, Brodt ED, Dettori JR, Brodke DS, Fehlings MG. Genetics and heritability of cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: results of a systematic review. Spine (Phila Pa 1976). 2013;38:S123–46.CrossRefGoogle Scholar
  75. 75.
    Wu JC, Ko CC, Yen YS, Huang WC, Chen YC, Liu L, Tu TH, Lo SS, Cheng H. Epidemiology of cervical spondylotic myelopathy and its risk of causing spinal cord injury: a national cohort study. Neurosurg Focus. 2013;35:E10.CrossRefGoogle Scholar
  76. 76.
    Xiong C, Daubs MD, Scott TP, Phan KH, Suzuki A, Ruangchainikom M, Roe AK, Aghdasi B, Tan Y, Wang JC. Dynamic evaluation of the cervical spine and the spinal cord of symptomatic patients using a kinetic magnetic resonance imaging technique. Clin Spine Surg. 2016;30:8.Google Scholar
  77. 77.
    Yu WR, Baptiste DC, Liu T, Odrobina E, Stanisz GJ, Fehlings MG. Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy. Neurobiol Dis. 2009;33:149–63.CrossRefGoogle Scholar
  78. 78.
    Yu WR, Liu T, Kiehl TR, Fehlings MG. Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain. 2011;134:1277–92.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aria Nouri
    • 1
  • Jean-Christophe Murray
    • 2
  • Michael G. Fehlings
    • 2
    Email author
  1. 1.Department of NeurosurgeryYale University and University of CincinnatiCincinnatiUSA
  2. 2.Division of Neurosurgery and Spine ProgramToronto Western Hospital, University of TorontoTorontoCanada

Personalised recommendations