Advertisement

The Cervicothoracic Junction

  • Anthony M. DiGiorgio
  • Michael S. Virk
  • Ming-Hsiao Hu
  • Mohanad Alazzeh
  • Santan Thottempudi
  • Praveen V. Mummaneni
Chapter

Abstract

The cervicothoracic junction (CTJ) serves as the interface between the flexible, lordotic cervical spine and the more rigid, kyphotic thoracic spine. It is comprised of the C7 and T1 vertebrae and the intervening discs, ribs, and spanning ligaments. The varying anatomy and load-bearing properties of these two spine regions require careful consideration. The transition from the mobile cervical spine to immobile thoracic spine exposes the CTJ to large forces, making it susceptible to trauma and requiring unique biomechanical considerations when planning stabilization constructs.

Keywords

Cervicothoracic junction CTJ Posterior approach crossing the CTJ Anterior approach crossing the CTJ 

References

  1. 1.
    Jeanneret B, et al. Posterior stabilization of the cervical spine with hook plates. Spine (Phila Pa 1976). 1991;16(3 Suppl):S56–63.CrossRefGoogle Scholar
  2. 2.
    Espinoza-Larios A, et al. Biomechanical comparison of two-level cervical locking posterior screw/rod and hook/rod techniques. Spine J. 2007;7(2):194–204.CrossRefGoogle Scholar
  3. 3.
    Mihir B, et al. Anterior instrumentation of the cervicothoracic vertebrae: approach based on clinical and radiologic criteria. Spine (Phila Pa 1976). 2006;31(9):E244–9.CrossRefGoogle Scholar
  4. 4.
    Mai HT, et al. Accessibility of the cervicothoracic junction through an anterior approach: an MRI-based algorithm. Spine (Phila Pa 1976). 2016;41(1):69–73.CrossRefGoogle Scholar
  5. 5.
    Falavigna A, Righesso O, Teles AR. Anterior approach to the cervicothoracic junction: proposed indication for manubriotomy based on preoperative computed tomography findings. J Neurosurg Spine. 2011;15(1):38–47.CrossRefGoogle Scholar
  6. 6.
    Schlenk RP, Kowalski RJ, Benzel EC. Biomechanics of spinal deformity. Neurosurg Focus. 2003;14(1):e2.PubMedGoogle Scholar
  7. 7.
    Lapsiwala S, Benzel E. Surgical management of cervical myelopathy dealing with the cervical-thoracic junction. Spine J. 2006;6(6 Suppl):268S–73S.CrossRefGoogle Scholar
  8. 8.
    Liu S, et al. Impact of dynamic alignment, motion, and center of rotation on myelopathy grade and regional disability in cervical spondylotic myelopathy. J Neurosurg Spine. 2015;23(6):690–700.CrossRefGoogle Scholar
  9. 9.
    Anderson PA, et al. Laminectomy and fusion for the treatment of cervical degenerative myelopathy. J Neurosurg Spine. 2009;11(2):150–6.CrossRefGoogle Scholar
  10. 10.
    Mummaneni PV, Deutsch H, Mummaneni VP. Cervicothoracic kyphosis. Neurosurg Clin N Am. 2006;17(3):277–87. vi.CrossRefGoogle Scholar
  11. 11.
    Steinmetz MP, et al. Regional instability following cervicothoracic junction surgery. J Neurosurg Spine. 2006;4(4):278–84.CrossRefGoogle Scholar
  12. 12.
    Bechara BP, et al. In vivo analysis of cervical range of motion after 4- and 5-level subaxial cervical spine fusion. Spine (Phila Pa 1976). 2012;37(1):E23–9.CrossRefGoogle Scholar
  13. 13.
    Mazel C, et al. Posterior cervicothoracic instrumentation in spine tumors. Spine (Phila Pa 1976). 2004;29(11):1246–53.CrossRefGoogle Scholar
  14. 14.
    Post NH, et al. Unique features of herniated discs at the cervicothoracic junction: clinical presentation, imaging, operative management, and outcome after anterior decompressive operation in 10 patients. Neurosurgery. 2006;58(3):497–501. discussion 497-501.CrossRefGoogle Scholar
  15. 15.
    Kaya RA, et al. A perspective for the selection of surgical approaches in patients with upper thoracic and cervicothoracic junction instabilities. Surg Neurol. 2006;65(5):454–63. discussion 463.CrossRefGoogle Scholar
  16. 16.
    Cheng I, et al. Biomechanical determination of distal level for fusions across the cervicothoracic junction. Global Spine J. 2015;5(4):282–6.CrossRefGoogle Scholar
  17. 17.
    Highsmith JM, et al. Treatment of cervical stenotic myelopathy: a cost and outcome comparison of laminoplasty versus laminectomy and lateral mass fusion. J Neurosurg Spine. 2011;14(5):619–25.CrossRefGoogle Scholar
  18. 18.
    Guppy KH, et al. Reoperation rates for symptomatic nonunions in posterior cervicothoracic fusions with and without bone morphogenetic protein in a cohort of 450 patients. J Neurosurg Spine. 2016;25(3):309–17.CrossRefGoogle Scholar
  19. 19.
    Goode AP, et al. Complications, revision fusions, readmissions, and utilization over a 1-year period after bone morphogenetic protein use during primary cervical spine fusions. Spine J. 2014;14(9):2051–9.CrossRefGoogle Scholar
  20. 20.
    Hamilton DK, et al. Safety, efficacy, and dosing of recombinant human bone morphogenetic protein-2 for posterior cervical and cervicothoracic instrumented fusion with a minimum 2-year follow-up. Neurosurgery. 2011;69(1):103–11. discussion 111.CrossRefGoogle Scholar
  21. 21.
    Tatsumi RL, et al. Mechanical comparison of posterior instrumentation constructs for spinal fixation across the cervicothoracic junction. Spine (Phila Pa 1976). 2007;32(10):1072–6.CrossRefGoogle Scholar
  22. 22.
    Eleraky M, et al. Biomechanical comparison of posterior cervicothoracic instrumentation techniques after one-level laminectomy and facetectomy. J Neurosurg Spine. 2010;13(5):622–9.CrossRefGoogle Scholar
  23. 23.
    Yang JS, Buchowski JM, Verma V. Construct type and risk factors for pseudarthrosis at the cervicothoracic junction. Spine (Phila Pa 1976). 2015;40(11):E613–7.CrossRefGoogle Scholar
  24. 24.
    Scheer JK, et al. Biomechanical analysis of cervicothoracic junction osteotomy in cadaveric model of ankylosing spondylitis: effect of rod material and diameter. J Neurosurg Spine. 2011;14(3):330–5.CrossRefGoogle Scholar
  25. 25.
    Rhee JM, Kraiwattanapong C, Hutton WC. A comparison of pedicle and lateral mass screw construct stiffnesses at the cervicothoracic junction: a biomechanical study. Spine (Phila Pa 1976). 2005;30(21):E636–40.CrossRefGoogle Scholar
  26. 26.
    Hojo Y, et al. A multicenter study on accuracy and complications of freehand placement of cervical pedicle screws under lateral fluoroscopy in different pathological conditions: CT-based evaluation of more than 1,000 screws. Eur Spine J. 2014;23(10):2166–74.CrossRefGoogle Scholar
  27. 27.
    Singh PK, et al. Computed tomography-guided C2 pedicle screw placement for treatment of unstable hangman fractures. Spine (Phila Pa 1976). 2014;39(18):E1058–65.CrossRefGoogle Scholar
  28. 28.
    Nottmeier EW, Pirris SM. Placement of thoracic transvertebral pedicle screws using 3D image guidance. J Neurosurg Spine. 2013;18(5):479–83.CrossRefGoogle Scholar
  29. 29.
    Hart RA, et al. Pedicle screw placement in the thoracic spine: a comparison of image-guided and manual techniques in cadavers. Spine (Phila Pa 1976). 2005;30(12):E326–31.CrossRefGoogle Scholar
  30. 30.
    Clark AJ, et al. Comparative sensitivity of intraoperative motor evoked potential monitoring in predicting postoperative neurologic deficits: nondegenerative versus degenerative myelopathy. Global Spine J. 2016;6(5):452–8.CrossRefGoogle Scholar
  31. 31.
    Ziewacz JE, et al. The design, development, and implementation of a checklist for intraoperative neuromonitoring changes. Neurosurg Focus. 2012;33(5):E11.CrossRefGoogle Scholar
  32. 32.
    Jeanneret B, Gebhard JS, Magerl F. Transpedicular screw fixation of articular mass fracture-separation: results of an anatomical study and operative technique. J Spinal Disord. 1994;7(3):222–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anthony M. DiGiorgio
    • 1
    • 2
  • Michael S. Virk
    • 3
  • Ming-Hsiao Hu
    • 4
    • 5
  • Mohanad Alazzeh
    • 6
  • Santan Thottempudi
    • 6
  • Praveen V. Mummaneni
    • 1
  1. 1.Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of Neurological SurgeryLouisiana State University Health Sciences CenterNew OrleansUSA
  3. 3.Department of NeurosurgeryUniversity of CaliforniaSan FranciscoUSA
  4. 4.Institute of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
  5. 5.Department of OrthopedicsNational Taiwan University College of Medicine and National Taiwan University HospitalTaipeiTaiwan
  6. 6.University of CaliforniaSan FranciscoUSA

Personalised recommendations