Alternative Diagnostic Tools

  • Kurt M. EichholzEmail author


Cervical spondylosis can lead to clinical symptoms of both cervical radiculopathy and myelopathy or a combination of the two. Clinical decision-making is based on a foundation of a detailed history and physical examination, combined with the appropriate imaging studies, such as plain static and dynamic radiographs, magnetic resonance imaging (MRI), computed tomography (CT), and, occasionally, myelography with post-myelography CT imaging. However, in certain situations, additional diagnostic testing may be required. The clinician may decide to use additional studies such as electromyography with nerve conduction studies, motor or sensory evoked potentials, diagnostic selective nerve root blocks, or other less frequently used diagnostic tools in order to guide clinical decision-making. This chapter will delineate the basics of these alternative diagnostic tools in the preoperative setting.


Cervical spondylosis Electromyography Nerve conduction study Selective nerve root blocks Alternative diagnostic tools or studies 

Supplementary material


  1. 1.
    Radhakrishnan K, Litchy W, O’Fallon W, et al. Epidemiology of cervical radiculopathy. A population-based study from Rochester, Minnesota, 1976 through 1990. Brain J Neurol. 1994;117(Pt 2):325–35.CrossRefGoogle Scholar
  2. 2.
    Nouri A, Teteault L, Sing A, Karadimas S, Fehlings M. Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine. 2015;40(12):E675–93.CrossRefGoogle Scholar
  3. 3.
    American Association of Neuromuscular & Electrodiagnostic Medicine. Position statement: who is qualified to practice electrodiagnostic medicine? Muscle Nerve.1999;(Suppl. 8):S263–265.Google Scholar
  4. 4.
    Hakimi K, Spanier D. Electrodiagnosis of cervical radiculopathy. Phys Med Rehabil Clin N Am. 2013;24:1–12.CrossRefGoogle Scholar
  5. 5.
    American Association of Electrodiagnostic Medicine, American Academy of Physical Medicine and Rehabilitation. The electrodiagnostic evaluation of patients with suspected cervical radiculopathy: literature review on the usefulness of needle electromyography. Muscle Nerve. 1999;22(Supplement 8):S213–221.Google Scholar
  6. 6.
    Gilad R, Dabby M, Boaz M, et al. Cervical paraspinal electromyography: normal values in 100 control subjects. J Clin Neurophysiol. 2006;23:573–6.CrossRefGoogle Scholar
  7. 7.
    Date ES, Kim B, Yoon JS, et al. Cervical paraspinal spontaneous activity in asymptomatic subjects. Muscle Nerve. 2006;34:361–4.CrossRefGoogle Scholar
  8. 8.
    Dillingham TR, Lauder TD, Andary M, et al. Identification of cervical radiculopathies: optimizing the electromyographer screen. Am J Phys Med Rehabil. 2001;80:84–91.CrossRefGoogle Scholar
  9. 9.
    Ashkan K, Johnston P, Moore AJ. A comparison of magnetic resonance imaging and neurophysiological studies in the assessment of cervical radiculopathy. Br J Neurosurg. 2002;16(2):146–8.CrossRefGoogle Scholar
  10. 10.
    Alrawi MF, Khalil NM, Mitchell P, Hughes SP. The value of neurophysiological and imaging studies in predicting outcome in the surgical treatment of cervical radiculopathy. Eur Spine J. 2007;16(49):5–500.Google Scholar
  11. 11.
    Dvorak J, Sutter M, Herdmann J. Cervical myelopathy: clinic and neurophysiological evaluation. Eur Spine J. 2003;12(Suppl 2):S181–7.CrossRefGoogle Scholar
  12. 12.
    Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–7.CrossRefGoogle Scholar
  13. 13.
    Lo YL, Chan LL, Lim W, Tan SB, Tan CT, Chen JLT, Fook-Chong S, Patnagopal P. Transcranial magnetic stimulation screening for cord compression in cervical spondylosis. J Neurol Sci. 2006;224:17–21.CrossRefGoogle Scholar
  14. 14.
    Bedarnik J, Kadanka Z, Dusek L, Kerkovsky M, Vohanka S, Novotny O, Urbanek I, Kratochvilova D. Presymtomatic spondylotic cervical myelopathy: an updated predictive model. Eur Spine J. 2008;17:421–31.Google Scholar
  15. 15.
    Kadanka Z, Mares M, Bedarnik J, Smrcka V, Krbec M, Chaloupka R, Dusek L. Predictive factors for mild forms of spondylotic cervical myelopathy treated conservatively or surgically. Eur J Neurol. 2005;12:16–24.CrossRefGoogle Scholar
  16. 16.
    Mazur MD, White A, McEvoy S, Bisson EF. Transcranial magnetic stimulation of the motor cortex correlated with objective clinical measures in patients with cervical spondylotic myelopathy. Spine. 2014;39(14):1113–20.CrossRefGoogle Scholar
  17. 17.
    Fitzgerald RT, Bartynski WS, Collins HR. Vertebral artery position in the setting of cervical degenerative disease: implications for selective cervical transforaminal epidural injections. Interv Neuroradiol. 2013;19(4):425–31.CrossRefGoogle Scholar
  18. 18.
    Stoll G, Wilder-Smith E, Bendszus M. Imaging of the peripheral nervous system. Handb Clin Neurol. 2013;115:137–53.CrossRefGoogle Scholar
  19. 19.
    Motimaya A, Arici M, George D, Ramsby G. Diagnostic value of cervical discography in the management of cervical discogenic pain. Conn Med. 2000;64(7):395–8.PubMedGoogle Scholar
  20. 20.
    Carragee EJ, Tammer CM, Khurana S, Hayward C, Welsh J, Date E, Truong T, Rossi M, Hagle C. The rates of false-positive lumbar discography in select patients without low back symptoms. Spine (Phila Pa 1976). 2000;25(11):1373–80; discussion 1381.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.St. Louis Minimally Invasive Spine CenterSt. LouisUSA

Personalised recommendations