Posthemorrhagic Hydrocephalus

  • Jonathan A. PindrikEmail author
  • Mark Halverson


Intraventricular hemorrhage (IVH) and posthemorrhagic hydrocephalus (PHH) represent two of the most common and debilitating conditions affecting premature neonates. With escalating grades of severity (Grade I–IV), the amount and extent of IVH influence rates of survival, risk of developing PHH requiring treatment, and neurocognitive outcomes. While the diagnosis of IVH relies solely on imaging modalities, the designation of PHH combines radiographic and clinical information. Treatment for PHH involves temporizing measures (typically ventriculo-subgaleal shunt or ventricular access device insertion) or permanent strategies (ventriculoperitoneal shunt [VPS] insertion or endoscopic third ventriculostomy with choroid plexus cauterization [ETV/CPC]) in the appropriate clinical setting. Improved neonatal care and these neurosurgical interventions have helped to reduce overall and hydrocephalus-related mortality rates in premature infants with IVH. However, mortality rates of premature infants with severe IVH remain high. Additionally, patients with severe IVH and PHH frequently exhibit neurocognitive impairment and elevated risks of developing cerebral palsy or epilepsy (Adams-Chapman et al., Pediatrics. 2008;121(5):e1167–77). Current research endeavors focus on the potential utility of cerebrospinal fluid biomarkers and rat models of IVH and PHH to trial novel preventive and therapeutic interventions.


Germinal matrix Germinal matrix hemorrhage (GMH) Intraventricular hemorrhage (IVH) Posthemorrhagic hydrocephalus (PHH) Ventriculo-peritoneal shunt (VPS) 



Anterior fontanelle


Arteriovenous malformation


Cerebral palsy


Cerebrospinal fluid


Evans index


Extremely low birth weight


Endoscopic third ventriculostomy


Endoscopic third ventriculostomy with choroid plexus cauterization


External ventricular drain


Frontal/occipital horn ratio




Gestational age


Germinal matrix hemorrhage


Head circumference


Hydrocephalus Clinical Research Network


Intracranial pressure


Intraventricular hemorrhage




Lumbar puncture


Mental Developmental Index




Magnetic resonance imaging


Neonatal intensive care unit


Odds ratio


Psychomotor Development Index


Posthemorrhagic hydrocephalus


Posthemorrhagic ventricular dilation


Periventricular hemorrhagic infarction


Periventricular leukomalacia


Red blood cell


Transforming growth factor-β




Ventricular access device


Ventriculoatrial shunt


Ventricular-brain ratio


Ventriculoperitoneal shunt


Ventriculo-subgaleal shunt


Very low birth weight


  1. 1.
    Vassilyadi M, Tataryn Z, Shamji MF, Ventureyra EC. Functional outcomes among premature infants with intraventricular hemorrhage. Pediatr Neurosurg. 2009;45(4):247–55.CrossRefGoogle Scholar
  2. 2.
    Ahn SY, Shim SY, Sung IK. Intraventricular hemorrhage and post hemorrhagic hydrocephalus among very-low-birth-weight infants in Korea. J Korean Med Sci. 2015;30(Suppl 1):S52–8.CrossRefGoogle Scholar
  3. 3.
    Klinger G, Osovsky M, Boyko V, Sokolover N, Sirota L, Lerner-Geva L, et al. Risk factors associated with post-hemorrhagic hydrocephalus among very low birth weight infants of 24-28 weeks gestation. J Perinatol. 2016;36(7):557–63.CrossRefGoogle Scholar
  4. 4.
    Strahle J, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res. 2012;3(Suppl 1):25–38.CrossRefGoogle Scholar
  5. 5.
    Ellenbogen JR, Waqar M, Pettorini B. Management of post-haemorrhagic hydrocephalus in premature infants. J Clin Neurosci. 2016;31:30–4.CrossRefGoogle Scholar
  6. 6.
    Lemons JA, Bauer CR, Oh W, Korones SB, Papile LA, Stoll BJ, et al. Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics. 2001;107(1):E1.CrossRefGoogle Scholar
  7. 7.
    Christian EA, Melamed EF, Peck E, Krieger MD, McComb JG. Surgical management of hydrocephalus secondary to intraventricular hemorrhage in the preterm infant. J Neurosurg Pediatr. 2016;17(3):278–84.CrossRefGoogle Scholar
  8. 8.
    Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126(3):443–56.CrossRefGoogle Scholar
  9. 9.
    Adams-Chapman I, Hansen NI, Stoll BJ, Higgins R. Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics. 2008;121(5):e1167–77.CrossRefGoogle Scholar
  10. 10.
    Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatr. 2012;9(3):242–58.CrossRefGoogle Scholar
  11. 11.
    Levy ML, Masri LS, McComb JG. Outcome for preterm infants with germinal matrix hemorrhage and progressive hydrocephalus. Neurosurgery. 1997;41(5):1111–7. discussion 7-8CrossRefGoogle Scholar
  12. 12.
    Wang JY, Amin AG, Jallo GI, Ahn ES. Ventricular reservoir versus ventriculosubgaleal shunt for posthemorrhagic hydrocephalus in preterm infants: infection risks and ventriculoperitoneal shunt rate. J Neurosurg Pediatr. 2014;14(5):447–54.CrossRefGoogle Scholar
  13. 13.
    Chamiraju P, Bhatia S, Sandberg DI, Ragheb J. Endoscopic third ventriculostomy and choroid plexus cauterization in posthemorrhagic hydrocephalus of prematurity. J Neurosurg Pediatr. 2014;13(4):433–9.CrossRefGoogle Scholar
  14. 14.
    Chen Q, Feng Z, Tan Q, Guo J, Tang J, Tan L, et al. Post-hemorrhagic hydrocephalus: recent advances and new therapeutic insights. J Neurol Sci. 2017;375:220–30.CrossRefGoogle Scholar
  15. 15.
    Morales DM, Holubkov R, Inder TE, Ahn HC, Mercer D, Rao R, et al. Cerebrospinal fluid levels of amyloid precursor protein are associated with ventricular size in post-hemorrhagic hydrocephalus of prematurity. PLoS One. 2015;10(3):e0115045.CrossRefGoogle Scholar
  16. 16.
    Merhar S. Biomarkers in neonatal posthemorrhagic hydrocephalus. Neonatology. 2012;101(1):1–7.CrossRefGoogle Scholar
  17. 17.
    Whitelaw A, Jary S, Kmita G, Wroblewska J, Musialik-Swietlinska E, Mandera M, et al. Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics. 2010;125(4):e852–8.CrossRefGoogle Scholar
  18. 18.
    Brouwer A, Groenendaal F, van Haastert IL, Rademaker K, Hanlo P, de Vries L. Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr. 2008;152(5):648–54.CrossRefGoogle Scholar
  19. 19.
    Lekic T, Manaenko A, Rolland W, Krafft PR, Peters R, Hartman RE, et al. Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Exp Neurol. 2012;236(1):69–78.CrossRefGoogle Scholar
  20. 20.
    Whitelaw A, Evans D, Carter M, Thoresen M, Wroblewska J, Mandera M, et al. Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brain-washing versus tapping fluid. Pediatrics. 2007;119(5):e1071–8.CrossRefGoogle Scholar
  21. 21.
    Limbrick DD Jr, Mathur A, Johnston JM, Munro R, Sagar J, Inder T, et al. Neurosurgical treatment of progressive posthemorrhagic ventricular dilation in preterm infants: a 10-year single-institution study. J Neurosurg Pediatr. 2010;6(3):224–30.CrossRefGoogle Scholar
  22. 22.
    O'Hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M. Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr Neurosurg. 1998;29(5):245–9.CrossRefGoogle Scholar
  23. 23.
    Sari E, Sari S, Akgun V, Ozcan E, Ince S, Babacan O, et al. Measures of ventricles and evans’ index: from neonate to adolescent. Pediatr Neurosurg. 2015;50(1):12–7.CrossRefGoogle Scholar
  24. 24.
    Synek V, Reuben JR. The ventricular-brain ratio using planimetric measurement of EMI scans. Br J Radiol. 1976;49(579):233–7.CrossRefGoogle Scholar
  25. 25.
    Ragan DK, Cerqua J, Nash T, McKinstry RC, Shimony JS, Jones BV, et al. The accuracy of linear indices of ventricular volume in pediatric hydrocephalus: technical note. J Neurosurg Pediatr. 2015;15(6):547–51.CrossRefGoogle Scholar
  26. 26.
    Mandell JG, Kulkarni AV, Warf BC, Schiff SJ. Volumetric brain analysis in neurosurgery: Part 2. Brain and CSF volumes discriminate neurocognitive outcomes in hydrocephalus. J Neurosurg Pediatr. 2015;15(2):125–32.CrossRefGoogle Scholar
  27. 27.
    Adzick NS, Thom EA, Spong CY, Brock JW 3rd, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004.CrossRefGoogle Scholar
  28. 28.
    Wellons JC, Shannon CN, Kulkarni AV, Simon TD, Riva-Cambrin J, Whitehead WE, et al. A multicenter retrospective comparison of conversion from temporary to permanent cerebrospinal fluid diversion in very low birth weight infants with posthemorrhagic hydrocephalus. J Neurosurg Pediatr. 2009;4(1):50–5.CrossRefGoogle Scholar
  29. 29.
    Mazzola CA, Choudhri AF, Auguste KI, Limbrick DD Jr, Rogido M, Mitchell L, et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: Management of posthemorrhagic hydrocephalus in premature infants. J Neurosurg Pediatr. 2014;14(Suppl 1):8–23.CrossRefGoogle Scholar
  30. 30.
    Sciubba DM, Noggle JC, Carson BS, Jallo GI. Antibiotic-impregnated shunt catheters for the treatment of infantile hydrocephalus. Pediatr Neurosurg. 2008;44(2):91–6.CrossRefGoogle Scholar
  31. 31.
    Wellons JC 3rd, Shannon CN, Holubkov R, Riva-Cambrin J, Kulkarni AV, Limbrick DD Jr, et al. Shunting outcomes in posthemorrhagic hydrocephalus: results of a Hydrocephalus Clinical Research Network prospective cohort study. J Neurosurg Pediatr. 2017;20(1):19–29.CrossRefGoogle Scholar
  32. 32.
    Whitelaw A. Repeated lumbar or ventricular punctures in newborns with intraventricular hemorrhage. Cochrane Database Syst Rev. 2001;1:CD000216.Google Scholar
  33. 33.
    Lam HP, Heilman CB. Ventricular access device versus ventriculosubgaleal shunt in post hemorrhagic hydrocephalus associated with prematurity. J Matern Fetal Neonatal Med. 2009;22(11):1097–101.CrossRefGoogle Scholar
  34. 34.
    Gurtner P, Bass T, Gudeman SK, Penix JO, Philput CB, Schinco FP. Surgical management of posthemorrhagic hydrocephalus in 22 low-birth-weight infants. Childs Nerv Syst. 1992;8(4):198–202.CrossRefGoogle Scholar
  35. 35.
    Brouwer AJ, van Stam C, Uniken Venema M, Koopman C, Groenendaal F, de Vries LS. Cognitive and neurological outcome at the age of 5-8 years of preterm infants with post-hemorrhagic ventricular dilatation requiring neurosurgical intervention. Neonatology. 2012;101(3):210–6.CrossRefGoogle Scholar
  36. 36.
    Riva-Cambrin J, Kestle JR, Holubkov R, Butler J, Kulkarni AV, Drake J, et al. Risk factors for shunt malfunction in pediatric hydrocephalus: a multicenter prospective cohort study. J Neurosurg Pediatr. 2016;17(4):382–90.CrossRefGoogle Scholar
  37. 37.
    Kulkarni AV, Riva-Cambrin J, Butler J, Browd SR, Drake JM, Holubkov R, et al. Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls: clinical article. J Neurosurg Pediatr. 2013;12(4):334–8.CrossRefGoogle Scholar
  38. 38.
    Simon TD, Whitlock KB, Riva-Cambrin J, Kestle JR, Rosenfeld M, Dean JM, et al. Revision surgeries are associated with significant increased risk of subsequent cerebrospinal fluid shunt infection. Pediatr Infect Dis J. 2012;31(6):551–6.CrossRefGoogle Scholar
  39. 39.
    Sciubba DM, Stuart RM, McGirt MJ, Woodworth GF, Samdani A, Carson B, et al. Effect of antibiotic-impregnated shunt catheters in decreasing the incidence of shunt infection in the treatment of hydrocephalus. J Neurosurg. 2005;103(2 Suppl):131–6.PubMedGoogle Scholar
  40. 40.
    Govender ST, Nathoo N, van Dellen JR. Evaluation of an antibiotic-impregnated shunt system for the treatment of hydrocephalus. J Neurosurg. 2003;99(5):831–9.CrossRefGoogle Scholar
  41. 41.
    Simon TD, Butler J, Whitlock KB, Browd SR, Holubkov R, Kestle JR, et al. Risk factors for first cerebrospinal fluid shunt infection: findings from a multi-center prospective cohort study. J Pediatr. 2014;164(6):1462–8.e2.CrossRefGoogle Scholar
  42. 42.
    Kestle JR, Riva-Cambrin J, Wellons JC 3rd, Kulkarni AV, Whitehead WE, Walker ML, et al. A standardized protocol to reduce cerebrospinal fluid shunt infection: the Hydrocephalus Clinical Research Network Quality Improvement Initiative. J Neurosurg Pediatr. 2011;8(1):22–9.CrossRefGoogle Scholar
  43. 43.
    George R, Leibrock L, Epstein M. Long-term analysis of cerebrospinal fluid shunt infections. A 25-year experience. J Neurosurg. 1979;51(6):804–11.CrossRefGoogle Scholar
  44. 44.
    Kestle JR, Holubkov R, Douglas Cochrane D, Kulkarni AV, Limbrick DD Jr, Luerssen TG, et al. A new Hydrocephalus Clinical Research Network protocol to reduce cerebrospinal fluid shunt infection. J Neurosurg Pediatr. 2016;17(4):391–6.CrossRefGoogle Scholar
  45. 45.
    Kulkarni AV, Drake JM, Mallucci CL, Sgouros S, Roth J, Constantini S. Endoscopic third ventriculostomy in the treatment of childhood hydrocephalus. J Pediatr. 2009;155(2):254–9.e1.CrossRefGoogle Scholar
  46. 46.
    Stone SS, Warf BC. Combined endoscopic third ventriculostomy and choroid plexus cauterization as primary treatment for infant hydrocephalus: a prospective North American series. J Neurosurg Pediatr. 2014;14(5):439–46.CrossRefGoogle Scholar
  47. 47.
    Kulkarni AV, Riva-Cambrin J, Browd SR, Drake JM, Holubkov R, Kestle JR, et al. Endoscopic third ventriculostomy and choroid plexus cauterization in infants with hydrocephalus: a retrospective Hydrocephalus Clinical Research Network study. J Neurosurg Pediatr. 2014;14(3):224–9.CrossRefGoogle Scholar
  48. 48.
    Warf BC. Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg. 2005;103(6 Suppl):475–81.PubMedGoogle Scholar
  49. 49.
    Reubsaet P, Brouwer AJ, van Haastert IC, Brouwer MJ, Koopman C, Groenendaal F, et al. The impact of low-grade germinal matrix-intraventricular hemorrhage on neurodevelopmental outcome of very preterm infants. Neonatology. 2017;112(3):203–10.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Pediatric Neurosurgery, Department of Neurological SurgeryNationwide Children’s Hospital, The Ohio State University College of MedicineColumbusUSA
  2. 2.Department of RadiologyNationwide Children’s HospitalColumbusUSA

Personalised recommendations