Advertisement

Intracranial Pulsatility, Cerebrospinal Fluid Flow, and Glymphatic Function in Idiopathic Normal Pressure Hydrocephalus

  • Per Kristian Eide
  • Geir Ringstad
Chapter

Abstract

Several cerebrospinal fluid (CSF) disorders, including hydrocephalus, may be accompanied with changes in the pulsatile intracranial pressure (ICP). Altered pressure pulsatility provides information about intracranial pressure-volume reserve capacity, usually referred to as intracranial compliance (ICC). Impaired ICC may be associated with neuronal dysfunction and causes the intracranial compartment to be more responsive to intracranial volume changes. The temporary intracranial volume load provided by every heart beat will therefore result in increased pulsatile ICP, which can be diagnosed by ICP monitoring with single ICP wave analysis. Another consequence of impaired ICC is altered CSF flow within the intracranial CSF spaces, e.g. within the Sylvian aqueduct and along large arteries within the subarachnoid space, and altered clearance of molecules from CSF. In humans, the glymphatic function capacity of the brain may be examined by magnetic resonance imaging (MRI) utilizing a MRI contrast agent administered to the CSF space (e.g. intrathecally) to serve as a CSF tracer (gMRI). Using this approach, evidence has been given that individuals with impaired ICC may have reduced clearance of CSF tracer from CSF and brain parenchyma. Since the brain is a highly active metabolic organ, CSF circulation compromise and reduced clearance of waste products may impair neurological function and contribute to neurodegeneration.

Keywords

Cerebrospinal fluid Hydrocephalus Pressure pulsatility Intracranial compliance Glymphatic function Clearance Neurodegeneration 

Abbreviations

Amyloid-β

AD

Alzheimer’s disease

AQP4

Aquaporin-4

CMI

Chiari malformation type I

CSF

Cerebrospinal fluid

Da

Dalton

Dp71

Dystrophin-71

ICC

Intracranial compliance

ICP

Intracranial pressure

IIH

Intracranial hypertension

iNPH

Idiopathic normal pressure hydrocephalus

MRI

Magnetic resonance imaging

MWA

Mean ICP wave amplitude

References

  1. 1.
    Czosnyka M. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75:813–21.CrossRefGoogle Scholar
  2. 2.
    Wagshul ME, Eide PK, Madsen JR. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS. 2011;8:5.CrossRefGoogle Scholar
  3. 3.
    Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring-review and avenues for development. Sensors (Basel). 2018;18:pii: E465.CrossRefGoogle Scholar
  4. 4.
    Eide PK. A new method for processing of continuous intracranial pressure signals. Med Eng Phys. 2006;28:579–87.CrossRefGoogle Scholar
  5. 5.
    Eide PK, Egge A, Due-Tonnessen BJ, Helseth E. Is intracranial pressure waveform analysis useful in the management of pediatric neurosurgical patients? Pediatr Neurosurg. 2007;43:472–81.CrossRefGoogle Scholar
  6. 6.
    Saehle T, Eide PK. Characteristics of intracranial pressure (ICP) waves and ICP in children with treatment-responsive hydrocephalus. Acta Neurochir. 2015;157:1003–14.CrossRefGoogle Scholar
  7. 7.
    Saehle T, Eide PK. Intracranial pressure monitoring in pediatric and adult patients with hydrocephalus and tentative shunt failure: a single-center experience over 10 years in 146 patients. J Neurosurg. 2015;122:1076–86.CrossRefGoogle Scholar
  8. 8.
    Eide PK. The pathophysiology of chronic noncommunicating hydrocephalus: lessons from continuous intracranial pressure monitoring and ventricular infusion testing. J Neurosurg. 2018;129:220–33.CrossRefGoogle Scholar
  9. 9.
    Eide PK, Sorteberg W. Diagnostic intracranial pressure monitoring and surgical management in idiopathic normal pressure hydrocephalus: a 6-year review of 214 patients. Neurosurgery. 2010;66:80–91.CrossRefGoogle Scholar
  10. 10.
    Eide PK, Sorteberg W. Outcome of surgery for idiopathic normal pressure hydrocephalus: role of preoperative static and pulsatile intracranial pressure. World Neurosurg. 2016;86:186–193 e181.CrossRefGoogle Scholar
  11. 11.
    Eide PK, Sorteberg W. Changes in intracranial pulse pressure amplitudes after shunt implantation and adjustment of shunt valve opening pressure in normal pressure hydrocephalus. Acta Neurochir. 2008;150:1141–7; discussion 1147.CrossRefGoogle Scholar
  12. 12.
    Eide PK, Kerty E. Static and pulsatile intracranial pressure in idiopathic intracranial hypertension. Clin Neurol Neurosurg. 2011;113:123–8.CrossRefGoogle Scholar
  13. 13.
    Fric R, Eide PK. Comparative observational study on the clinical presentation, intracranial volume measurements, and intracranial pressure scores in patients with either Chiari malformation Type I or idiopathic intracranial hypertension. J Neurosurg. 2017;126:1312–22.CrossRefGoogle Scholar
  14. 14.
    Eide PK, Ringstad G. Increased pulsatile intracranial pressure in patients with symptomatic pineal cysts and magnetic resonance imaging biomarkers indicative of central venous hypertension. J Neurol Sci. 2016;367:247–55.CrossRefGoogle Scholar
  15. 15.
    Eide PK, Ringstad G. Results of surgery in symptomatic non-hydrocephalic pineal cysts: role of magnetic resonance imaging biomarkers indicative of central venous hypertension. Acta Neurochir. 2017;159:349–61.CrossRefGoogle Scholar
  16. 16.
    Eide PK. The correlation between pulsatile intracranial pressure and indices of intracranial pressure-volume reserve capacity: results from ventricular infusion testing. J Neurosurg. 2016;125:1493–503.CrossRefGoogle Scholar
  17. 17.
    Eide PK, Sorteberg W. Association among intracranial compliance, intracranial pulse pressure amplitude and intracranial pressure in patients with intracranial bleeds. Neurol Res. 2007;29:798–802.CrossRefGoogle Scholar
  18. 18.
    Eide PK, Stanisic M. Cerebral microdialysis and intracranial pressure monitoring in patients with idiopathic normal-pressure hydrocephalus: association with clinical response to extended lumbar drainage and shunt surgery. J Neurosurg. 2010;112:414–24.CrossRefGoogle Scholar
  19. 19.
    Eide PK. Cardiac output in idiopathic normal pressure hydrocephalus: association with arterial blood pressure and intracranial pressure wave amplitudes and outcome of shunt surgery. Fluids Barriers CNS. 2011;8:11.CrossRefGoogle Scholar
  20. 20.
    Eide PK, Hansson HA. Astrogliosis and impaired aquaporin-4 and dystrophin systems in idiopathic normal pressure hydrocephalus. Neuropathol Appl Neurobiol. 2018;44:474–90.CrossRefGoogle Scholar
  21. 21.
    Aiken AH, Hoots JA, Saindane AM, Hudgins PA. Incidence of cerebellar tonsillar ectopia in idiopathic intracranial hypertension: a mimic of the Chiari I malformation. AJNR Am J Neuroradiol. 2012;33:1901–6.CrossRefGoogle Scholar
  22. 22.
    Ringstad G, Emblem KE, Eide PK. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. J Neurosurg. 2016;124:1850–7.CrossRefGoogle Scholar
  23. 23.
    McComb JG. Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983;59:369–83.CrossRefGoogle Scholar
  24. 24.
    Bedussi B, van Lier MG, Bartstra JW, de Vos J, Siebes M, VanBavel E, et al. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids Barriers CNS. 2015;12:23.CrossRefGoogle Scholar
  25. 25.
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4:147ra111.CrossRefGoogle Scholar
  26. 26.
    Oreskovic D, Klarica M. A new look at cerebrospinal fluid movement. Fluids Barriers CNS. 2014;11:16.CrossRefGoogle Scholar
  27. 27.
    Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140:2691–705.CrossRefGoogle Scholar
  28. 28.
    Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10.CrossRefGoogle Scholar
  29. 29.
    Morris AW, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016;131:725–36.CrossRefGoogle Scholar
  30. 30.
    Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a “paravascular” fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326:47–63.CrossRefGoogle Scholar
  31. 31.
    Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci. 2013;33:18190–9.CrossRefGoogle Scholar
  32. 32.
    Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76:845–61.CrossRefGoogle Scholar
  33. 33.
    Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34:16180–93.CrossRefGoogle Scholar
  34. 34.
    Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373–7.CrossRefGoogle Scholar
  35. 35.
    von Holstein-Rathlou S, Petersen NC, Nedergaard M. Voluntary running enhances glymphatic influx in awake behaving, young mice. Neurosci Lett. 2018;662:253–8.CrossRefGoogle Scholar
  36. 36.
    Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J Cereb Blood Flow Metab. 2018:271678x18760974.  https://doi.org/10.1177/0271678X18760974.
  37. 37.
    Eide PK, Ringstad G. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain. Acta Radiol Open. 2015;4:2058460115609635.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Moser MB, Rowland DC, Moser EI. Place cells, grid cells, and memory. Cold Spring Harb Perspect Biol. 2015;7:a021808.CrossRefGoogle Scholar
  39. 39.
    Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hanninen T, Laakso MP, et al. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging. 2004;25:303–10.CrossRefGoogle Scholar
  40. 40.
    Weed LH. Studies on Cerebro-Spinal Fluid. No. III: the pathways of escape from the Subarachnoid Spaces with particular reference to the Arachnoid Villi. J Med Res. 1914;31:51–91.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM, Omholt SW, et al. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc Natl Acad Sci U S A. 2017;114:9894–9.CrossRefGoogle Scholar
  42. 42.
    Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45:545–52.CrossRefGoogle Scholar
  43. 43.
    Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123:1299–309.CrossRefGoogle Scholar
  44. 44.
    Eide PK, Sroka M, Wozniak A, Saehle T. Morphological characterization of cardiac induced intracranial pressure (ICP) waves in patients with overdrainage of cerebrospinal fluid and negative ICP. Med Eng Phys. 2012;34:1066–70.CrossRefGoogle Scholar
  45. 45.
    Elvsashagen T, Zak N, Norbom LB, Pedersen PO, Quraishi SH, Bjornerud A, et al. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation. NeuroImage. 2017;156:214–23.CrossRefGoogle Scholar
  46. 46.
    Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93:1543–62.CrossRefGoogle Scholar
  47. 47.
    Bedussi B, van der Wel NN, de Vos J, van Veen H, Siebes M, VanBavel E, et al. Paravascular channels, cisterns, and the subarachnoid space in the rat brain: a single compartment with preferential pathways. J Cereb Blood Flow Metab. 2017;37(4):1374–85.CrossRefGoogle Scholar
  48. 48.
    Bonomini F, Rezzani R. Aquaporin and blood brain barrier. Curr Neuropharmacol. 2010;8:92–6.CrossRefGoogle Scholar
  49. 49.
    Manley GT, Binder DK, Papadopoulos MC, Verkman AS. New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience. 2004;129:983–91.CrossRefGoogle Scholar
  50. 50.
    Yao X, Hrabetova S, Nicholson C, Manley GT. Aquaporin-4-deficient mice have increased extracellular space without tortuosity change. J Neurosci. 2008;28:5460–4.CrossRefGoogle Scholar
  51. 51.
    Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS. Test of the “glymphatic” hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife. 2017;6:pii: e27679.  https://doi.org/10.7554/eLife.27679.CrossRefGoogle Scholar
  52. 52.
    Burfeind KG, Murchison CF, Westaway SK, Simon MJ, Erten-Lyons D, Kaye JA, et al. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer’s disease. Alzheimers Dement (N Y). 2017;3:348–59.Google Scholar
  53. 53.
    Zeppenfeld DM, Simon M, Haswell J, et al. Association of perivascular localization of aquaporin-4 with cognition and alzheimer disease in aging brains. JAMA Neurol. 2017;74:91–9.CrossRefGoogle Scholar
  54. 54.
    Li X, Han Y, Xu H, Sun Z, Zhou Z, Long X, et al. Aquaporin 4 expression and ultrastructure of the blood-brain barrier following cerebral contusion injury. Neural Regen Res. 2013;8:338–45.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Eide PK, Eidsvaag VA, Nagelhus EA, Hansson HA. Cortical astrogliosis and increased perivascular aquaporin-4 in idiopathic intracranial hypertension. Brain Res. 2016;1644:161–75.CrossRefGoogle Scholar
  56. 56.
    Eidsvaag VA, Hansson HA, Heuser K, Nagelhus EA, Eide PK. Brain capillary ultrastructure in idiopathic normal pressure hydrocephalus: relationship with static and pulsatile intracranial pressure. J Neuropathol Exp Neurol. 2017;76:1034–45.CrossRefGoogle Scholar
  57. 57.
    Siasios I, Kapsalaki EZ, Fountas KN, Fotiadou A, Dorsch A, Vakharia K, et al. The role of diffusion tensor imaging and fractional anisotropy in the evaluation of patients with idiopathic normal pressure hydrocephalus: a literature review. Neurosurg Focus. 2016;41:E12.CrossRefGoogle Scholar
  58. 58.
    Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34:131–44.CrossRefGoogle Scholar
  59. 59.
    Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nat Immunol. 2017;18:123–31.CrossRefGoogle Scholar
  60. 60.
    Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009;117:1–14.CrossRefGoogle Scholar
  61. 61.
    Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991–9.CrossRefGoogle Scholar
  62. 62.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–41.CrossRefGoogle Scholar
  63. 63.
    Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife. 2017;6:pii: e29738.CrossRefGoogle Scholar
  64. 64.
    Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep. 2018;8:7194.  https://doi.org/10.1038/s41598-018-25666-4.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Oslo University Hospital – Rikshospitalet, Department of NeurosurgeryOsloNorway
  2. 2.Oslo University Hospital – Rikshospitalet, Department of RadiologyOsloNorway

Personalised recommendations