Advertisement

Universal Witness Signatures

  • Chen Qian
  • Mehdi Tibouchi
  • Rémi Géraud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11049)

Abstract

A lot of research has been devoted to the problem of defining and constructing signature schemes with various delegation properties. They mostly fit into two families. On the one hand, there are signature schemes that allow the delegation of signing rights, such as (hierarchical) identity-based signatures, attribute-based signatures, functional signatures, etc. On the other hand, there are malleable signature schemes, which make it possible to derive, from a signature on some message, new signatures on related messages without owning the secret key. This includes redactable signatures, set-homomorphic signatures, signatures on formulas of propositional logic, etc.

In this paper, we set out to unify those various delegatable signatures in a new primitive called universal witness signatures (UWS), which subsumes previous schemes into a simple and easy to use definition, and captures in some sense the most general notion of (unary) delegation. We also give several constructions based on a range of cryptographic assumptions (from one-way functions alone to SNARKs and obfuscation) and achieving various levels of security, privacy and succinctness.

Keywords

Digital signatures Delegation Malleable signatures Functional signatures Identity-based cryptography Obfuscation SNARKs 

References

  1. 1.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. J. Cryptol. 28(2), 351–395 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005).  https://doi.org/10.1007/11555827_10CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_23CrossRefGoogle Scholar
  4. 4.
    Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016 (1). LNCS, vol. 9614, pp. 357–386. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_14CrossRefGoogle Scholar
  5. 5.
    Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1–6:48 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_30CrossRefGoogle Scholar
  7. 7.
    Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014 (2). LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_16CrossRefGoogle Scholar
  8. 8.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: STOC, pp. 111–120. ACM (2013)Google Scholar
  9. 9.
    Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_18CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00468-1_5CrossRefGoogle Scholar
  11. 11.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_29CrossRefGoogle Scholar
  12. 12.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures: new definitions and delegatable anonymous credentials. In: CSF, pp. 199–213. IEEE Computer Society (2014)Google Scholar
  13. 13.
    Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature cards. In: ICS, pp. 310–331. Tsinghua University Press (2010)Google Scholar
  14. 14.
    Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Secure hierarchical identity based signature and its application. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 480–494. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30191-2_37CrossRefzbMATHGoogle Scholar
  15. 15.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49. IEEE Computer Society (2013)Google Scholar
  16. 16.
    Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC 2016-B (2). LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_10CrossRefGoogle Scholar
  17. 17.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_37CrossRefGoogle Scholar
  18. 18.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36178-2_34CrossRefGoogle Scholar
  19. 19.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45760-7_17CrossRefGoogle Scholar
  20. 20.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC, pp. 723–732. ACM (1992)Google Scholar
  21. 21.
    Kiltz, E., Neven, G.: Identity-based signatures. In: Joye, M., Neven, G. (eds.) Identity-Based Cryptography, Cryptology and Information Security Series, vol. 2, pp. 31–44. IOS Press, Amsterdam (2008)Google Scholar
  22. 22.
    Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its applications. In: AsiaCCS, pp. 60–69. ACM (2010)Google Scholar
  23. 23.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19074-2_24CrossRefGoogle Scholar
  24. 24.
    Naccache, D.: Is theoretical cryptography any good in practice? CRYPTO & CHES 2010 invited talk (2010)Google Scholar
  25. 25.
    Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. IEEE Trans. Cloud Comput. 2(4), 409–421 (2014)CrossRefGoogle Scholar
  26. 26.
    Qian, C., Tibouchi, M., Géraud, R.: Universal witness signatures. HAL Open Archive (2018). Full version of this paper, https://hal.archives-ouvertes.fr/hal-01814279v1
  27. 27.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC, pp. 475–484. ACM (2014)Google Scholar
  28. 28.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_5CrossRefGoogle Scholar
  29. 29.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45861-1_22CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Univ RennesRennesFrance
  2. 2.NTT Secure Platform LaboratoriesTokyoJapan
  3. 3.École normale supérieureParisFrance

Personalised recommendations