Advertisement

XOR-Based Hierarchical Secret Sharing Scheme

  • Koji Shima
  • Hiroshi Doi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11049)

Abstract

Hierarchical secret sharing schemes are known for how they share a secret among a group of participants partitioned into levels. In this study, we apply the general concept of hierarchy to Kurihara et al.’s XOR-based secret sharing scheme and propose a hierarchical secret sharing scheme applicable at any level. In our scheme, a minimal number of higher-level participants are required for recovery of the secret. Such hierarchical schemes applicable at any level over finite fields have been proposed, but no XOR-based hierarchical schemes applicable at any level have been reported. We realize the first such scheme. Moreover, considering practical use, we present an evaluation of our software implementation.

Keywords

Secret sharing scheme Hierarchical access structure XOR-based scheme Ideal scheme Software implementation 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful and constructive comments. This work was supported by JSPS KAKENHI Grant Number JP18K11306.

References

  1. 1.
    Blakley, G.R.: Safeguarding cryptographic keys. AFIPS 48, 313–317 (1979)Google Scholar
  2. 2.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_26CrossRefGoogle Scholar
  4. 4.
    Tassa, T.: Hierarchical Threshold secret sharing. J. Cryptol. 20(2), 237–264 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fujii, Y., Tada, M., Hosaka, N., Tochikubo, K., Kato, T.: A fast \((2, n)\)-threshold scheme and its application. CSS 2005, 631–636 (2005). (in Japanese)Google Scholar
  6. 6.
    Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast \((3, n)\)-threshold secret sharing scheme using Exclusive-OR operations. IEICE Trans. Fundam. E91-A(1), 127–138 (2008)Google Scholar
  7. 7.
    Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: On a fast \((k, n)\)-threshold secret sharing scheme. IEICE Trans. Fundam. E91-A(9), 2365–2378 (2008)Google Scholar
  8. 8.
    Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k,n)-threshold secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85886-7_31CrossRefGoogle Scholar
  9. 9.
    Kurihara, J., Uyematsu, T.: A novel realization of threshold schemes over binary field extensions. IEICE Trans. Fundam. E94-A(6), 1375–1380 (2011)CrossRefGoogle Scholar
  10. 10.
    Feng, G.-L., Deng, R.-H., Bao, F.: Packet-loss resilient coding scheme with only XOR operations. IEE Proc. Commun. 151(4), 322–328 (2004)CrossRefGoogle Scholar
  11. 11.
    Blömer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., Zuckerman, D.: An XOR-Based Erasure-Resilient Coding Scheme. ICSI Technical report TR-95-048 (1995)Google Scholar
  12. 12.
    Chen, L., Laing, T.M., Martin, K.M.: Efficient, XOR-based, ideal \((t,n)-\)threshold schemes. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 467–483. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48965-0_28CrossRefGoogle Scholar
  13. 13.
    Selçuk, A.A., Kaşkaloğlu, K., Özbudak, F.: On hierarchical threshold secret sharing. IACR Cryptology ePrint Archive 2009, p. 450 (2009)Google Scholar
  14. 14.
    Simmons, G.J.: How to (Really) share a secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_30CrossRefGoogle Scholar
  15. 15.
    Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-46885-4_45CrossRefGoogle Scholar
  16. 16.
    Castiglione, A., De Santis, A., Masucci, B.: Hierarchical and shared key assignment. NBiS-2014, pp. 263–270 (2014)Google Scholar
  17. 17.
    Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20901-7_2CrossRefGoogle Scholar
  18. 18.
    Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. TCS 154, 283–306 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 148–167. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-48071-4_11CrossRefGoogle Scholar
  20. 20.
    Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast \((k, L, n)\)-threshold ramp secret sharing scheme. IEICE Trans. Fundam. E92-A(8), 1808–1821 (2009)Google Scholar
  21. 21.
    Shima, K., Doi, H.: \((\{1,3\}, n)\) hierarchical secret sharing scheme based on XOR operations for a small number of indispensable participants. AsiaJCIS 2016, pp. 108–114 (2016)Google Scholar
  22. 22.
    Shima, K., Doi, H.: A hierarchical secret sharing scheme over finite fields of characteristic 2. J. Inf. Process. 25, 875–883 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Information SecurityYokohamaJapan

Personalised recommendations