Advertisement

Improvements to Almost Optimum Secret Sharing with Cheating Detection

  • Louis Cianciullo
  • Hossein Ghodosi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11049)

Abstract

Secret sharing allows a secret s to be distributed amongst n participants in the form of shares. An authorised set of these participants is then able to reconstruct s at a latter date by pooling their shares. Secret sharing with cheating detection capability (SSCD) allows participants to detect the submission of faulty or modified shares. Within this field researchers consider two different models of security, the OKS model and the CDV model.

In SPACE 2015 Jhanwar and Safavi-Naini (JS) presented two SSCD schemes, one developed under each of the security models. We prove that both of these schemes fail to detect cheating. We then show that with some modifications both schemes can be made secure. The resulting schemes have near optimal share size, support operations from an arbitrary finite field and provide a high level of security even if the secret domain is small. The first of these schemes is devised under the OKS model and is the most efficient of its kind, whilst the second is devised under the CDV model and is as efficient as the current best solution.

References

  1. 1.
    Araki, T., Obana, S.: Flaws in some secret sharing schemes against cheating. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 122–132. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73458-1_10CrossRefGoogle Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10. ACM, New York (1988)Google Scholar
  3. 3.
    Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_19CrossRefGoogle Scholar
  4. 4.
    Blakley, G.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS National Computer Conference, pp. 313–317. AFIPS Press, Monval (1979)Google Scholar
  5. 5.
    Cabello, S., Padró, C., Sáez, G.: Secret sharing schemes with detection of cheaters for a general access structure. Des. Codes Crypt. 25(2), 175–188 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 118–125. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48285-7_10CrossRefzbMATHGoogle Scholar
  7. 7.
    Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_13CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_27CrossRefGoogle Scholar
  9. 9.
    Hoshino, H., Obana, S.: Almost optimum secret sharing schemes with cheating detection for random bit strings. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp. 213–222. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22425-1_13CrossRefGoogle Scholar
  10. 10.
    Jhanwar, M.P., Safavi-Naini, R.: Almost optimum secret sharing with cheating detection. In: Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 359–372. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24126-5_21CrossRefGoogle Scholar
  11. 11.
    Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmission scheme. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 99–112. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10230-1_8CrossRefGoogle Scholar
  12. 12.
    Obana, S., Tsuchida, K.: Cheating detectable secret sharing schemes supporting an arbitrary finite field. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 88–97. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09843-2_7CrossRefGoogle Scholar
  13. 13.
    Ogata, W., Kurosawa, K.: Optimum secret sharing scheme secure against cheating. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 200–211. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68339-9_18CrossRefGoogle Scholar
  14. 14.
    Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum secret sharing scheme secure against cheating. SIAM J. Discret. Math. 20(1), 79–95 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tompa, M., Woll, H.: How to share a secret with cheaters. J. Crypt. 1(2), 133–138 (1988)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.James Cook UniversityTownsvilleAustralia

Personalised recommendations