Fuzzy Granular Calculations for the Sematic Web Using Some Mathematical Morphology Methods

  • Anna BryniarskaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 837)


In the Semantic Web, during searching information, we can get precise answer for our searching query, even if we have uncertain, vague or unclear information. This positive result of searching information depends on expert choices of acceptable fuzzy degrees for concepts and roles, and also depends on appropriate description of concepts and roles interpretations in the fuzzy sets algebra. In this paper is proposed such interpretation, by using methods of the mathematical morphology and granular computing. Moreover, in order to formulate this problem is used the fuzzy description logic and the postulates of searching information in the Semantic Web are widened.


Semantic Web Fuzzy disambiguation Description logic FuzzyDL Information retrieval logic Fuzzy set algebra Granulation Dilatation Erosion 


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley, Boston (1999)Google Scholar
  3. 3.
    Bloch, I.: Mathematical morphology. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 857-944. Springer (2007)Google Scholar
  4. 4.
    Bobillo F., Straccia, U.: FuzzyDL: an expressive fuzzy description logic reasoner. In: IEEE World Congress on Computational Intelligence, Hong Kong, pp. 923–930 (2008)Google Scholar
  5. 5.
    Bryniarska, A.: The algorithm of knowledge defuzzification in semantic network. In: Grzech, A., Borzemski, L., Świa̧tek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology, Networks Design and Analysis, pp. 23–32. OW Politechniki Wrocawskiej, Poland (2012)Google Scholar
  6. 6.
    Bryniarska, A.: An information retrieval agent in web resources. In: IADIS International Conference Intelligent Systems and Agents 2013 Proceedings, Prague, Czech Republic, pp. 121–125 (2013)Google Scholar
  7. 7.
    Bryniarska, A.: The paradox of the fuzzy disambiguation in the information retrieval. (IJARAI) Int. J. Adv. Res. Artif. Intell. 2(9), 55–58 (2013)Google Scholar
  8. 8.
    Ceglarek, R., Rutkowski, W.: Automated acquisition of semantic knowledge to improve efficiency of information retrieval systems. In: Proceedings of the Business Information Systems 10th International Conference, BIS 2006. LNCS, pp. 329–341. Springer (2006)Google Scholar
  9. 9.
    Ceglarek, R., Haniewicz, K., Rutkowski, W.: Semantic Compression for Specialized Information Retrieval Systems. In: Advances in Intelligent Information and Database Systems, Studies in Computational Intelligence, vol. 283, pp. 111–121. Springer (2010)Google Scholar
  10. 10.
    Cerami, M., Esteva, F., Bou, F.: Decidability of a description logic over infinite-valued product logic. In: Proceedings of the 12th International Conference on the Principles of Knowledge Representation and Reasoning, pp. 203–213 (2010)Google Scholar
  11. 11.
    Galantucci, L.M., Percoco, G., Spina, R.: Assembly and disassembly by using fuzzy logic and genetic algorithms. Int. J. Adv. Robot. Syst. 1(2), 67–74 (2004)CrossRefGoogle Scholar
  12. 12.
    Háje, P.: Metamathematics of Fuzzy Logic. Trends in Logic, Studia Logica Library, vol. 4. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  13. 13.
    Kowalski, R.A.: Logic for Problem Solving. North Holland (1979)Google Scholar
  14. 14.
    Manning, Ch.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)Google Scholar
  15. 15.
    Pan, J.Z., Stamou, G., Stoilos, G., Thomas, E.: Expressive querying over fuzzy DL-lite ontologies. In: Scalable Querying Services over Fuzzy Ontologies, 17th International World-Wide-Web Conference, Beijin (2008)Google Scholar
  16. 16.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Cambridge (1982)zbMATHGoogle Scholar
  17. 17.
    Simou, N., Stoilos, G., Tzouvaras, V., Stamou, G., Kollias, S.: Storing and querying fuzzy knowledge in the semantic web. In: Proceedings of 4th International Workshop on Uncertainty Reasoning for the Semantic Web, Karlsruhe, Germany (2008)Google Scholar
  18. 18.
    Simou, N., Mailis, T., Stoilos, G., Stamou, S.: Optimization techniques for fuzzy description logics. In: Proceedings of 23rd International Workshop on Description Logics, vol. 573, pp. 244–254. CEUR-WS, Waterloo (2010)Google Scholar
  19. 19.
    Straccia, U.: A fuzzy description logic. In: Proceedings of the 15th National Conference on Artificial Intelligence, Madison, USA, pp. 594–599 (1998)Google Scholar
  20. 20.
    Straccia, U.: Reasoning with fuzzy description logics. J. Artif. Intell. Res. 14, 137–166 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wu, Q.H., Lu, Z., Ji, T.: Protective Relaying of Power Systems Using Mathematical Morphology. Springer, Dordrecht (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computer ScienceOpole University of TechnologyOpolePoland

Personalised recommendations