Advertisement

A Propositional Logical Encoding of Enriched Interactions in Abstract Argumentation Graphs

  • Claudette Cayrol
  • Luis Fariñas del Cerro
  • Marie-Christine Lagasquie-Schiex
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 17)

Abstract

This chapter aims at providing logical encodings for translating interactions in an argumentation graph themselves into propositional knowledge bases. This translation will be used for identifying or redefining some properties of argumentation graphs. The graphs we consider are used to formalize abstract argumentation with at least two different kinds of interaction (attack and support) and also recursive interactions.

Keywords

Abstract argumentation Higher-order interactions Logical encoding Propositional logic 

References

  1. Alliot, J., Demolombe, R., Fariñas del Cerro, L., Dièguez, L., & Obeid, N. (2015). Reasoning on molecular interaction maps. In L. Kóczy & J. Medina (Eds.), Proceedings of the 7th European Symposium on Computational Intelligence and Mathematics, ESCIM 2015 (pp. 263–269). Cádiz, Spain: University of Cádiz.Google Scholar
  2. Amgoud, L., Besnard, P., & Hunter, A. (2015). Logical representation and analysis for RC-arguments. In Proceedings of the 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015 (pp. 104–110). Vietri sul Mare, Italy: IEEE Computer Society.Google Scholar
  3. Amgoud, L. & Cayrol, C. (2002). A reasoning model based on the production of acceptable arguments. Annals of Mathematics and Artificial Intelligence, 34(1–3), 197–215.CrossRefGoogle Scholar
  4. Amgoud, L., Maudet, N., & Parsons, S. (2000). Modeling dialogues using argumentation. In Proceedings of the 4th International Conference on Multi-agent Systems, ICMAS 2000 (pp. 31–38). Boston, USA: IEEE Computer Society.Google Scholar
  5. Arieli, O. & Caminada, M. W. A. (2013). A QBF-based formalization of abstract argumentation semantics. Journal of Applied Logic, 11(2), 229–252.CrossRefGoogle Scholar
  6. Baroni, P., Cerutti, F., Giacomin, M., & Guida, G. (2011). AFRA: Argumentation framework with recursive attacks. International Journal of Approximate Reasoning, 52(1), 19–37.CrossRefGoogle Scholar
  7. Beierle, C., Brons, F., & Potyka, N. (2015). A software system using a SAT solver for reasoning under complete, stable, preferred, and grounded argumentation semantics. In S. Hölldobler, M. Krötzsch, R. Peñaloza, & S. Rudolph (Eds.), Proceedings of KI 2015: Advances in Artificial Intelligence – 38th Annual German Conference on AI (Vol. 9324, pp. 241–248). Lecture Notes in Computer Science. Dresden, Germany: Springer.CrossRefGoogle Scholar
  8. Besnard, P., Doutre, S., & Herzig, A. (2014). Encoding argument graphs in logic. In A. Laurent, O. Strauss, B. Bouchon-Meunier, & R. R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems – Proceedings of the 15th International Conference, IPMU 2014, part II (Vol. 443, pp. 345–354). Communications in Computer and Information Science. Montpellier, France: Springer.Google Scholar
  9. Bogaerts, B., Janhunen, T., & Tasharrofi, S. (2016). Declarative solver development: Case studies. In C. Baral, J. P. Delgrande, & F. Wolter (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the 15th International Conference, KR 2016 (pp. 74–83). Cape Town, South Africa: AAAI Press.Google Scholar
  10. Brewka, G. & Woltran, S. (2010). Abstract dialectical frameworks. In F. Lin, U. Sattler, & M. Truszczyński (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the 12th International Conference, KR 2010. Toronto, Canada: AAAI Press.Google Scholar
  11. Cayrol, C., Cohen, A., & Lagasquie-Schiex, M.-C. (2016). Towards a new framework for recursive interactions in abstract bipolar argumentation. In P. Baroni, T. F. Gordon, T. Scheffler, & M. Stede (Eds.), Computational Models of Argument – Proceedings of COMMA 2016 (Vol. 287, pp. 191–198). Frontiers in Artificial Intelligence and Applications. Potsdam, Germany: IOS Press.Google Scholar
  12. Cayrol, C. & Lagasquie-Schiex, M. -C. (2010). Coalitions of arguments: A tool for handling bipolar argumentation frameworks. International Journal of Intelligent Systems, 25(1), 83–109.CrossRefGoogle Scholar
  13. Cayrol, C. & Lagasquie-Schiex, M.-C. (2013). Bipolarity in argumentation graphs: Towards a better understanding. International Journal of Approximate Reasoning, 54(7), 876–899.CrossRefGoogle Scholar
  14. Cayrol, C. & Lagasquie-Schiex, M. -C. (2015). An axiomatic approach to support in argumentation. In E. Black, S. Modgil, & N. Oren (Eds.), Theory and Applications of Formal Argumentation – 3rd International Workshop, TAFA 2015, Revised Selected Papers (Vol. 9524, pp. 74–91). Lecture Notes in Computer Science. Buenos Aires, Argentina: Springer.CrossRefGoogle Scholar
  15. Cerutti, F., Dunne, P. E., Giacomin, M., & Vallati, M. (2013). Computing preferred extensions in abstract argumentation: A SAT-based approach. In E. Black, S. Modgil, & N. Oren (Eds.), Theory and Applications of Formal Argumentation - 2nd International Workshop, TAFA 2013, Revised Selected Papers (Vol. 8306, pp. 176–193). Lecture Notes in Computer Science. Beijing, China: Springer.CrossRefGoogle Scholar
  16. Cohen, A., Gottifredi, S., García, A. J., & Simari, G. R. (2015). An approach to abstract argumentation with recursive attack and support. Journal of Applied Logic, 13(4), 509–533.CrossRefGoogle Scholar
  17. Demolombe, R., Fariñas del Cerro, L., & Obeid, N. (2013). Automated reasoning in metabolic networks with inhibition. In M. Baldoni, C. Baroglio, G. Boella, & R. Micalizio (Eds.), Proceedings of AI\(\ast \)IA 2013: Advances in Artificial Intelligence – XIIIth International Conference of the Italian Association for Artificial Intelligence (Vol. 8249, pp. 37-47). Lecture Notes in Computer Science. Turin, Italy: Springer.Google Scholar
  18. Demolombe, R., Fariñas del Cerro, L., & Obeid, N. (2016). Translation of first order formulas into ground formulas via a completion theory. Journal of Applied Logic, 15, 130–149.CrossRefGoogle Scholar
  19. Dupin de Saint-Cyr, F., Bisquert, P., Cayrol, C., & Lagasquie-Schiex, M.-C. (2016). Argumentation update in YALLA (yet another logic language for argumentation). International Journal of Approximate Reasoning, 75, 57–92.CrossRefGoogle Scholar
  20. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games. Artificial Intelligence, 77(2), 321–358.CrossRefGoogle Scholar
  21. Gabbay, D. M. (2013). Meta-logical Investigations in Argumentation Networks. Studies in Logic. College Publications.Google Scholar
  22. Grossi, D. (2010). On the logic of argumentation theory. In W. van der Hoek, G. A. Kaminka, Y. Lespérance, M. Luck, & S. Sen (Eds.), 9th International Conference on Autonomous Agents and Multiagent systems (AAMAS 2010) (Vol. 1–3, pp. 409–416). Toronto, Canada: IFAAMAS.Google Scholar
  23. Karacapilidis, N. I. & Papadias, D. (2001). Computer supported argumentation and collaborative decision making: The HERMES system. Information Systems, 26(4), 259–277.CrossRefGoogle Scholar
  24. Lagniez, J.-M., Lonca, E., & Mailly, J. (2015). CoQuiAAS: A constraint-based quick abstract argumentation solver. In 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015 (pp. 928–935). Vietri sul Mare: IEEE Computer Society.Google Scholar
  25. Marquis, P. (2000). Consequence finding algorithms. In D. M. Gabbay & P. Smets (Eds.), Handbook of Defeasible Reasoning and Uncertainty Management Systems: Algorithms for Defeasible and Uncertain Reasoning (Vol. 5, pp. 41–145).CrossRefGoogle Scholar
  26. Modgil, S. (2009). Reasoning about preferences in argumentation frameworks. Artificial Intelligence, 173(9–10), 901–934.CrossRefGoogle Scholar
  27. Nouioua, F. (2013). AFs with necessities: Further semantics and labelling characterization. In W. Liu, V. S. Subrahmanian, & J. Wijsen (Eds.), Proceedings of Scalable Uncertainty Management – 7th International Conference, SUM 2013 (Vol. 8078, pp. 120–133). Lecture Notes in Computer Science. Washington D.C., USA: Springer.Google Scholar
  28. Nouioua, F. & Risch, V. (2010). Bipolar argumentation frameworks with specialized supports. In 22nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2010 (Vol. 1, pp. 215–218). Arras, France: IEEE Computer Society.Google Scholar
  29. Nouioua, F. & Risch, V. (2011). Argumentation frameworks with necessities. In S. Benferhat & J. Grant (Eds.), Proceedings of Scalable Uncertainty Management – 5th International Conference, SUM 2011 (Vol. 6929, pp. 163–176). Lecture Notes in Computer Science. Dayton, USA: Springer.Google Scholar
  30. Oren, N. & Norman, T. J. (2008). Semantics for evidence-based argumentation. In P. Besnard, S. Doutre, & A. Hunter (Eds.), Computational Models of Argument: Proceedings of COMMA 2008 (Vol. 172, pp. 276–284). Frontiers in Artificial Intelligence and Applications. Toulouse, France: IOS Press.Google Scholar
  31. Oren, N., Reed, C., & Luck, M. (2010). Moving between argumentation frameworks. In P. Baroni, F. Cerutti, M. Giacomin, & G. R. Simari (Eds.), Computational Models of Argument: Proceedings of COMMA 2010 (Vol. 216, pp. 379–390). Frontiers in Artificial Intelligence and Applications. Desenzano del Garda, Italy: IOS Press.Google Scholar
  32. Polberg, S. & Oren, N. (2014). Revisiting support in abstract argumentation systems. In S. Parsons, N. Oren, C. Reed, & F. Cerutti (Eds.), Computational Models of Argument: Proceedings of COMMA 2014 (Vol. 266, pp. 369–376). Frontiers in Artificial Intelligence and Applications. Atholl Palace Hotel, Scottish Highlands, UK: IOS Press.Google Scholar
  33. Prakken, H. (2014). On support relations in abstract argumentation as abstractions of inferential relations. In T. Schaub, G. Friedrich, & B. O’Sullivan (Eds.), ECAI 2014 – 21st European Conference on Artificial Intelligence, Including Prestigious Applications of Intelligent Systems (PAIS 2014) (Vol. 263, pp. 735–740). Frontiers in Artificial Intelligence and Applications. Prague, Czech Republic: IOS Press.Google Scholar
  34. Verheij, B. (2003). Deflog: On the logical interpretation of prima facie justified assumptions. Journal of Logic and Computation, 13(3), 319–346.CrossRefGoogle Scholar
  35. Villata, S., Boella, G., Gabbay, D. M., & van der Torre, L. W. N. (2012). Modelling defeasible and prioritized support in bipolar argumentation. Annals of Mathematics and Artificial Intelligence, 66(1–4), 163–197.CrossRefGoogle Scholar
  36. Wallner, J. P., Weissenbacher, G., & Woltran, S. (2013). Advanced SAT techniques for abstract argumentation. In J. Leite, T. C. Son, P. Torroni, L. van der Torre, & S.Woltran (Eds.), Proceedings of Computational Logic in Multi-agent Systems – 14th International Workshop, CLIMA XIV (Vol. 8143, pp. 138–154). Lecture Notes in Computer Science. Corunna, Spain: Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Claudette Cayrol
    • 1
  • Luis Fariñas del Cerro
    • 1
  • Marie-Christine Lagasquie-Schiex
    • 1
  1. 1.Institut de recherche en informatique de Toulouse, CNRS — Toulouse UniversityToulouse Cedex 9France

Personalised recommendations