Advertisement

Adaptive Rough Sets and Vague Concepts

  • Andrzej Skowron
  • Soma Dutta
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 17)

Abstract

In this chapter our attempt is to point out different ways of addressing different perspectives of understanding a vague concept from the angle of rough set semantics. In this attempt, we propose to depart from the closed way of presenting information table characterizing a vague concept with respect to a closed sample of objects, a fixed set of attributes, and a static time point. To do that we introduce an interactive information system which is open to incorporate new information based on the interaction of an agent with the physical reality. Moreover, we propose an outline of an adaptive information system which incorporates the possibility of adapting decision strategies based on the history of making decisions over a period of time through interactions of an agent with the physical reality.

Keywords

(Adaptive) rough set (Adaptive) information system Indiscernibility Infomorphism Complex granule Granular computing Vague concept 

Notes

Acknowledgements

The authors would like to thank the referees for their valuable comments which helped to improve the manuscript. This work was partially supported by the Polish National Centre for Research and Development (NCBiR) under the grant DZP/RID-I-44 / 8 /NCBR/2016.

References

  1. Baker, G. P. & Hacker, P. M. S. (Eds.). (2005). Wittgenstein: Understanding and Meaning: Volume 1 of an Analytical Commentary on the Philosophical Investigations, Part II: Exegesis §§1–184 (2nd edn.). Wiley-Blackwell.Google Scholar
  2. Banerjee, M. & Chakraborty, M. K. (2003). Foundations of vagueness : A category theoretic approach. Electronic Notes on Theoretical Computer Science, 82(4), 10–19.CrossRefGoogle Scholar
  3. Barwise, J. & Seligman, J. (Eds.). (1997). Information Flow: The Logic of Distributed Systems. Cambridge: Cambridge University Press.Google Scholar
  4. Batens, D. (1999). Inconsistency-adaptive logics. In E. Orłowska (Ed.), Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa (pp. 445–472). Heidelberg: Physica Verlag.Google Scholar
  5. Batens, D. (2016). Tutorial on inconsistency-adaptive logics. In J.-Y. Béziau, M. Chakraborty, & S. Dutta (Eds.), New Directions in Paraconsistent Logic (pp. 3–38). Springer Proceedings in Mathematics & Statistics. Heidelberg: Springer.Google Scholar
  6. Bazan, J. G. (2008). Hierarchical classifiers for complex spatio-temporal concepts. Transactions on Rough Sets, IX(LNCS 6390), 474–750.Google Scholar
  7. Bazan, J. G., Skowron, A., & Świniarski, R. W. (2006). Rough sets and vague concept approximation: From sample approximation to adaptive learning. Transactions on Rough Sets, V(LNCS 4100), 39–62.Google Scholar
  8. Black, M. (1937). Vagueness: An exercise in logical analysis. Philosophy of Science, 4(4), 427–455.CrossRefGoogle Scholar
  9. Bonikowski, Z. & Wybraniec-Skardowska, U. (2008). Vagueness and roughness. Transactions on Rough Sets, IX, (LNCS 5390), 1–13).Google Scholar
  10. Burns, L. (1991). Vagueness. An Investigation into Natural Languages and the Sorites Paradox. Kluwer Academic Publishers.Google Scholar
  11. Dubois, D. & Prade, H. (1988). Modeling uncertain and vague knowledge in possibility and evidence theories. In R. D. Shachter, T. S. Levitt, L. N. Kanal, & J. F. Lemmer (Eds.), UAI ’88: Proceedings of the 4th Annual Conference on Uncertainty in Artificial Intelligence (pp. 303–318). Minneapolis, USA: North-Holland.CrossRefGoogle Scholar
  12. Dubois, D. & Prade, H. (1994). Fuzzy sets-a convenient fiction for modeling vagueness and possibility. IEEE Transactions on Fuzzy Systems, 2(1), 16–21.CrossRefGoogle Scholar
  13. Dubois, D. & Prade, H. (2013). Modeling uncertain and vague knowledge in possibility and evidence theories. CoRR. arXiv:1304.2349.
  14. Dubois, D., Lang, J., & Prade, H. (1991). Handling uncertainty, context, vague predicates, and partial inconsistency in possibilistic logic. In D. Driankov, P. W. Eklund, & A. L. Ralescu (Eds.), Proceedings of Workshops Fuzzy Logic and Fuzzy Control, IJCAI ’91 (Vol. 833, pp. 45–55). Lecture Notes in Computer Science. Sydney, Australia: Springer.CrossRefGoogle Scholar
  15. Dubois, D., Esteva, F., Godo, L., & Prade, H. (2001). An information-based discussion of vagueness. In Proceedings of the 10th IEEE International Conference on Fuzzy Systems (pp. 781–784). Melbourne, Australia: IEEE.Google Scholar
  16. Dubois, D., Godo, L., Prade, H., & Esteva, F. (2005). An information-based discussion of vagueness. In H. Cohen & C. Lefebvre (Eds.), Handbook of Categorization in Cognitive Science (pp. 892–913). Amsterdam: Elsevier.Google Scholar
  17. Dutta, S., Basu, S., & Chakraborty, M. K. (2013). Many-valued logics, fuzzy logics and graded consequence: A comparative appraisal. In K. Lodaya (Ed.), Proceedings of Logic and Its Applications, 5th Indian Conference, ICLA 2013 (Vol. 7750, pp. 197–209). Lecture Notes in Computer Science. Chennai, India: Springer.Google Scholar
  18. Fine, K. (1975). Vagueness, truth and logic. Synthese, 30(3/4), 265–300.CrossRefGoogle Scholar
  19. Frege, G. (1903). Grundgesetze der Arithmetik. Jena: Verlag von Hermann Pohle.Google Scholar
  20. Geach, P. & Black, M. (Eds.). (1960). Translations from the Philosophical Writings of Gottlob Frege. Oxford: Blackwell.Google Scholar
  21. Goguen, J. A. (1969). The logic of inexact concepts. Synthese, 19(3/4), 325–373.CrossRefGoogle Scholar
  22. Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Heidelberg: Springer Verlag.CrossRefGoogle Scholar
  23. Hempel, C. G. (1939). Vagueness and logic. Philosophy of Science, 6, 163–180.CrossRefGoogle Scholar
  24. Jankowski, A. (2017). Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective. Lecture Notes in Networks and Systems. Heidelberg: Springer.CrossRefGoogle Scholar
  25. Jankowski, A. & Skowron, A. (2007). A wistech paradigm for intelligent systems. Transactions on Rough Sets, VI(LNCS 4374), 94–132.Google Scholar
  26. Jankowski, A. & Skowron, A. (2009). Wisdom technology: A rough-granular approach. In M. Marciniak & A. Mykowiecka (Eds.), Aspects of Natural Language Processing, Essays Dedicated to Leonard Bolc on the Occasion of his 75th Birthday (Vol. 5070, pp. 3–41). Lecture Notes in Computer Science. Berlin: Springer.CrossRefGoogle Scholar
  27. Jankowski, A., Skowron, A., & Wasilewski, P. (2012). Risk management and interactive computational systems. Journal of Advanced Mathematics and Applications, 1(1), 61–73.CrossRefGoogle Scholar
  28. Jankowski, A., Skowron, A., & Świniarski, R. W. (2014). Perspectives on uncertainty and risk in rough sets and interactive rough-granular computing. Fundamenta Informaticae, 129(1–2), 69–84.Google Scholar
  29. Jankowski, A., Skowron, A., & Wasilewski, P. (2016). Rough sets and sorites paradox. In B.-H. Schlingloff (Ed.), Proceedings of the 25th International Workshop on Concurrency, Specification and Programming 2016 (Vol. 1698, pp. 49–60). CEUR Workshop Proceedings. Rostock, Germany: CEUR-WS.org.Google Scholar
  30. Kacprzyk, J. & Pedrycz, W. (2015). Springer Handbook of Computational Intelligence. Heidelberg: Springer.CrossRefGoogle Scholar
  31. Keefe, R. (2000). Theories of Vagueness. Cambridge Studies in Philosophy. Cambridge: Cambridge University Press.Google Scholar
  32. Keefe, R. & Smith, P. (1997). Vagueness: A Reader. Cambridge: MIT Press.Google Scholar
  33. Konrad, E., Orłowska, E., & Pawlak, Z. (1981). Knowledge representation systems (No. 433). ICS PAS Reports.Google Scholar
  34. Konrad, E., Orłowska, E., & Pawlak, Z. (1982). On approximate concept learning. In Proceedings of the European Conference on AI (pp. 17–19). See also Technische Universität Berlin, Bericht No. 81/87, 1981. Orsay, France.Google Scholar
  35. Lawry, J. & Dubois, D. (2012). A bipolar framework for combining beliefs about vague propositions. In G. Brewka, T. Eiter, & S. A. McIlraith (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the 13th International Conference, KR 2012. Rome, Italy: AAAI Press.Google Scholar
  36. Marcus, S. (1998). The paradox of the heap of grains in respect to roughness, fuzziness and negligibility. In L. Polkowski & A. Skowron (Eds.), Proceedings of Rough Sets and Current Trends in Computing, 1st International Conference, RSCTC’98 (Vol. 1424, pp. 19–23). Lecture Notes in Computer Science. Warsaw, Poland: Springer.Google Scholar
  37. Noë, A. (2004). Action in Perception. Cambridge: MIT Press.Google Scholar
  38. Orłowska, E. (1982a). Logic of vague concepts. Bulletin of the Section of Logic, 11(3/4), 115–126.Google Scholar
  39. Orłowska, E. (1982b). Semantics of vague concepts (No. 450). ICS PAS Reports.Google Scholar
  40. Orłowska, E. (1983a). Semantics of vague concepts. In G. Dorn & P. Weingartner (Eds.), Foundations of Logic and Linguistics. Problems and Their Solutions. Selected Contributions to the 7th International Congress of Logic, Methodology and Philosophy of Science, Salzburg 1983 (pp. 465–482). London/New York: Plenum Press.CrossRefGoogle Scholar
  41. Orłowska, E. (1983b). Semantics of vague concepts. In Abstracts of the 7th International Congress of Logic, Methodology and Philosophy of Science (Vol. 2, pp. 127–130). Salzburg, Austria.Google Scholar
  42. Orłowska, E. (1987). Reasoning about vague concepts. Bulletin of the Polish Academy of Sciences, 35, 643–652.Google Scholar
  43. Orłowska, E. (1988). Representation of vague information. Information Systems, 13(2), 167–174.CrossRefGoogle Scholar
  44. Orłowska, E. & Pawlak, Z. (1981a). Expressive power of knowledge representation systems (No. 432). ICS PAS Reports.Google Scholar
  45. Orłowska, E. & Pawlak, Z. (1981b). Representation of nondeterministic information (No. 450). ICS PAS Reports.Google Scholar
  46. Orłowska, E. & Pawlak, Z. (1984a). Expressive power of knowledge representation systems. International Journal of Man-Machine Studies, 20(5), 485–500.CrossRefGoogle Scholar
  47. Orłowska, E. & Pawlak, Z. (1984b). Logical foundations of knowledge representation (No. 537). ICS PAS Reports.Google Scholar
  48. Orłowska, E. & Pawlak, Z. (1984c). Measurement and indiscernibility. Bulletin of the Polish Academy of Sciences, 32(9–10), 617–624.Google Scholar
  49. Orłowska, E. & Pawlak, Z. (1984d). Representation of nondeterministic information. Theoretical Computer Science, 29, 27–39.CrossRefGoogle Scholar
  50. Pal, S. K., Polkowski, L., & Skowron, A. (Eds.). (2004). Rough-neural Computing: Techniques for Computing with Words. Cognitive Technologies. Berlin: Springer.Google Scholar
  51. Pawlak, Z. (1973a). Mathematical foundation of information retrieval. In Mathematical Foundations of Computer Science: Proceedings of Symposium and Summer School (pp. 135–136). Strbské Pleso, Czechoslovakia: Mathematical Institute of the Slovak Academy of Sciences.Google Scholar
  52. Pawlak, Z. (1973b). Mathematical foundation of information retrieval (No. 101). ICS PAS Reports.Google Scholar
  53. Pawlak, Z. (1981). Information systems–theoretical foundations. Information Systems, 6(3), 205–218.CrossRefGoogle Scholar
  54. Pawlak, Z. (1982). Rough sets. International Journal of Parallel Programming, 11(5), 341–356.Google Scholar
  55. Pawlak, Z. (1991). Rough Sets: Theoretical Aspects of Reasoning About Data. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  56. Pawlak, Z. (1995). Vagueness and uncertainty: A rough set perspective. Computational Intelligence, 11, 277–232.CrossRefGoogle Scholar
  57. Pawlak, Z. (1997). Vagueness - a rough set view. In J. Mycielski, G. Rozenberg, & A. Salomaa (Eds.), Structures in Logic and Computer Science, A Selection of Essays in Honor of Andrzej Ehrenfeucht (Vol. 1261, pp. 106–117). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  58. Pawlak, Z. & Skowron, A. (2007). Rudiments of rough sets. Information Sciences, 177(1), 3–27.CrossRefGoogle Scholar
  59. Polkowski, L. & Semeniuk-Polkowska, M. (2014). Boundaries, borders, fences, hedges. Fundamenta Informaticae, 129(1–2), 149–159.Google Scholar
  60. Polkowski, L. & Skowron, A. (2001). Rough mereological calculi of granules: A rough set approach to computation. Computational Intelligence, 17(3), 472–492.CrossRefGoogle Scholar
  61. Prade, H. (1990). A two-layer fuzzy pattern matching procedure for the evaluation of conditions involving vague quantifiers. Journal of Intelligent and Robotic Systems, 3(2), 93–101.CrossRefGoogle Scholar
  62. Prade, H. & Testemale, C. (1984). Generalizing database relational algebra for the treatment of incomplete/uncertain information and vague queries. Information Sciences, 34(2), 115–143.CrossRefGoogle Scholar
  63. Read, S. (1994). Thinking About Logic: An Introduction to the Philosophy of Logic. Oxford-New York: Oxford University Press.Google Scholar
  64. Ronzitti, G. (Ed.). (2011). Vagueness: A Guide. Logic, Epistemology, and the Unity of Science. Berlin: Springer.Google Scholar
  65. Russell, B. (1923). Vagueness. The Australian Journal of Psychology and Philosophy, 1(2), 84–92.CrossRefGoogle Scholar
  66. Seising, R. (2007). Pioneers of vagueness, haziness, and fuzziness in the 20th century. In M. Nikravesh, J. Kacprzyk, & L. A. Zadeh (Eds.), Forging New Frontiers: Fuzzy Pioneers I (pp. 55–81). Berlin-Heidelberg: Springer.Google Scholar
  67. Shapiro, S. (2006). Vagueness in Context. Oxford: Clarendon Press.Google Scholar
  68. Skowron, A. (2005). Rough sets and vague concepts. Fundamenta Informaticae, 64(1–4), 417–431.Google Scholar
  69. Skowron, A. & Jankowski, A. (2015). Rough sets and vague concepts. Annals of the University of Bucharest (Informatics series), LXII(3), 119–133.Google Scholar
  70. Skowron, A. & Jankowski, A. (2016). Rough sets and interactive granular computing. Fundamenta Informaticae, 147(2–3), 371–385.CrossRefGoogle Scholar
  71. Skowron, A. & Nguyen, H. S. (2013). Rough sets: From rudiments to challenges. In A. Skowron & Z. Suraj (Eds.), Rough Sets and Intelligent Systems: Professor Zdzisław Pawlak in Memoriam (Vols. 2, 43, pp. 75–173). Intelligent Systems Reference Library. Berlin: Springer.Google Scholar
  72. Skowron, A. & Świniarski, R. W. (2005). Rough sets and higher order vagueness. In D. Ślęzak, G. Wang, M. S. Szczuka, I. Düntsch, & Y. Yao (Eds.), Proceedings of Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 10th International Conference, RSFDGrC 2005, Part I (Vol. 3641, pp. 33–42). Lecture Notes in Computer Science. Regina, Canada: Springer.Google Scholar
  73. Skowron, A. & Szczuka, M. S. (2010). Toward interactive computations: A rough granular approach. In J. Koronacki, Z.W. Raś, S. T.Wierzchoń, & J. Kacprzyk (Eds.), Advances in Machine Learning II, Dedicated to the Memory of Professor Ryszard S. Michalski (Vol. 263, pp. 23–42). Studies in Computational Intelligence. Berlin: Springer.CrossRefGoogle Scholar
  74. Skowron, A. & Wasilewski, P. (2012). Interactive information systems: Toward perception based computing. Theoretical Computer Science, 454, 240–260.CrossRefGoogle Scholar
  75. Ślęzak, D. & Wasilewski, P. (2008). Foundations of rough sets from vagueness perspective. In A. E. Hassanien, Z. Suraj, D. Ślęzak, & P. Lingras (Eds.), Rough Computing: Theories, Technologies and Applications (pp. 1–37). Hershey: IGI Global.Google Scholar
  76. Wolski, M. (2013). Science and semantics: A note on vagueness. In A. Skowron & Z. Suraj (Eds.), Rough Sets and Intelligent Systems: Professor Zdzisław Pawlak in Memoriam (Vols. 2, 43, pp. 623–643). Intelligent Systems Reference Library. Berlin: Springer.Google Scholar
  77. Zadeh, L. A. (2012). Computing with Words–Principal Concepts and Ideas. Studies in Fuzziness and Soft Computing. Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WarsawWarsawPoland
  2. 2.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  3. 3.Vistula UniversityWarsawPoland
  4. 4.Department of Mathematics and Computer ScienceUniversity of Warmia and MazuryOlsztynPoland

Personalised recommendations