Advertisement

Modal Syllogistic

  • Tsvetan Vasilev
  • Dimiter Vakarelov
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 17)

Abstract

A modal extension of classical syllogistic is given interpreted by the standard relational Kripke semantics. Completeness theorems and decidability for the minimal system and some of its extensions are proven. Completeness with respect to extensions with arbitrary Sahlqvist formulas is also considered.

Keywords

Syllogistic Modal logic Completeness theorem Decidability 

References

  1. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press.Google Scholar
  2. Ferro, A., Omodeo, E. G., & Schwartz, J. T. (1980). Decision procedures for elementary sublanguages of set theory. I: Multilevel syllogistic and some extensions. Communications on Pure and Applied Mathematics 33(6), 599–608.CrossRefGoogle Scholar
  3. Goranko, V. & Vakarelov, D. (2006). Elementary canonical formulae: Extending Sahlqvist’s theorem. Annals of Pure and Applied Logic 141(1–2), 180–217.CrossRefGoogle Scholar
  4. Leevers, H. J. & Harris, P. L. (2000). Counterfactual syllogistic reasoning in normal 4-year-olds, children with learning disabilities, and children with autism. Journal of Experimental Child Psychology 76(1), 64–87.CrossRefGoogle Scholar
  5. Łukasiewicz, J. (1951). Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic (1st ed.). Oxford: Clarendon Press.Google Scholar
  6. Łukasiewicz, J. (1957). Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic (2nd ed.). Oxford: Clarendon Press.Google Scholar
  7. McAllester, D. A. & Givan, R. (1992). Natural language syntax and first-order inference. Artificial Intelligence 56(1), 1–20.CrossRefGoogle Scholar
  8. Moss, L. S. (2008). Completeness theorems for syllogistic fragments. In S. Kepser & F. Hamm (Eds.), Logics for Linguistic Structures (pp. 143–174). Berlin-New York: de Gruyter.Google Scholar
  9. Moss, L. S. (2010). Logics for Natural Language Inference. Expanded version of lecture notes from a course at ESSLLI 2010. Retrieved from http://www.indiana.edu/iulg/moss/notes.pdf.
  10. Nishihara, N., Morita, K., & Iwata, S. (1990). An extended syllogistic system with verbs and proper nouns, and its completeness proof. Systems and Computers in Japan 21(1), 96–111.CrossRefGoogle Scholar
  11. Orłowska, E. (1997). Studying incompleteness of information: A class of information logics. In K. Kijania-Placek & J. Woleński (Eds.), The Lvov-Warsaw School and Contemporary Philosophy (pp. 383–300).Google Scholar
  12. Pfeifer, N. (2006). Contemporary syllogistics: Comparative and quantitative syllogisms. In G. Krenzebauer & G. Doren (Eds.), Argumentation in Theorie und Praxis: Philosophie und Didaktik des Argumentierens. Vienna: LIT.Google Scholar
  13. Politzer, G. (2004). Some precursors of current theories of syllogistic reasoning. In K. Manktelow & C. Chung (Eds.), Psychology of Reasoning: Theoretical and Historical Perspectives. Hove: Psychology Press.Google Scholar
  14. Pratt-Hartmann, I. (2004). Fragments of language. Journal of Logic, Language and Information 13(2), 207–223.CrossRefGoogle Scholar
  15. Pratt-Hartmann, I. (2005). Complexity of the two-variable fragment with counting quantifiers. Journal of Logic, Language and Information 14(3), 369–395.CrossRefGoogle Scholar
  16. Pratt-Hartmann, I. (2009). No syllogisms for the numerical syllogistic. In O. Grumberg, M. Kaminski, S. Katz, & S.Wintner (Eds.), Languages: From Formal to Natural, Essays Dedicated to Nissim Francez on the Occasion of his 65th Birthday (Vol. 5533, pp. 192–203). Lecture Notes in Computer Science. Berlin: Springer.CrossRefGoogle Scholar
  17. Pratt-Hartmann, I. & Moss, L. S. (2009). Logics for the relational syllogistic. Review of Symbolic Logic 2(4), 647–683.CrossRefGoogle Scholar
  18. Pratt-Hartmann, I. & Third, A. (2006). More fragments of language. Notre Dame Journal of Formal Logic 47(2), 151–177.CrossRefGoogle Scholar
  19. Purdy, W. C. (1991). A logic for natural language. Notre Dame Journal of Formal Logic 32(3), 409–425.CrossRefGoogle Scholar
  20. Rayside, D. & Kontogiannis, K. (2001). On the syllogistic structure of objectoriented programming. In H. A. Müller, M. J. Harrold, & W. Schäfer (Eds.), Proceedings of the 23rd International Conference on Software Engineering, ICSE 2001 (pp. 113–122). Toronto: IEEE Computer Society.Google Scholar
  21. Rescher, N. (1964). Aristotle’s theory of modal syllogisms and its interpretation. In M. Bunge (Ed.), The Critical Approach to Science and Philosophy (pp. 152–177). New York: Free Press of Glencoe.Google Scholar
  22. Sahlqvist, H. (1975). Completeness and correspondence in the first- and second-order semantics for modal logic. In S. Kanger (Ed.), Proceedings of the 3rd Scandinavian Logic Smposium (pp. 110–143). Amsterdam: North-Holland.CrossRefGoogle Scholar
  23. Sambin, G. & Vaccaro, V. (1989). A new proof of Sahlqvist’s theorem on modal definability and completeness. Journal of Symbolic Logic 54(3), 992–999.CrossRefGoogle Scholar
  24. Shepherdson, J. C. (1956). On the interpretation of Aristotelian syllogistic. Journal of Symbolic Logic 21(2), 137–147.CrossRefGoogle Scholar
  25. Thorne, C. & Calvanese, D. (2009). The data complexity of the syllogistic fragments of English. In M. Aloni, H. Bastiaanse, T. de Jager, & K. Schulz (Eds.), Logic, Lnguage and Meaning – 17th Amsterdam Colloquium, Revised Selected Papers (Vol. 6042, pp. 114–123). Lecture Notes in Computer Science. Berlin: Springer.CrossRefGoogle Scholar
  26. van der Does, J. & van Eijck, J. (1996). Basic quantifier theory. In J. van der Does & J. van Eijck (Eds.), Quantifiers, Logic, and Language (pp. 1–45). Stanford: CSLI Publications.Google Scholar
  27. van Eijck, J. (2007). Natural logic for natural language. In B. ten Cate & H. Zeevat (Eds.), Logic, Language, and Computation, 6th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC, 2005 Revised Selected Papers (Vol. 4363, pp. 216–230). Lecture Notes in Computer Science. Batumi: Springer.Google Scholar
  28. Wedberg, A. (1948). The Aristotelian theory of classes. Ajatus 15, 299–314.Google Scholar
  29. Westerståhl, D. (1989). Aristotelian syllogisms and generalized quantifiers. Studia Logica 48(4), 577–585.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical Logic and Applications, Faculty of Mathematics and InformaticsSofia UniversitySofiaBulgaria

Personalised recommendations