Advertisement

Low Power Microphone Front-Ends

  • Lorenzo CrespiEmail author
  • Claudio De Berti
  • Brian Friend
  • Piero Malcovati
  • Andrea Baschirotto
Chapter

Abstract

Audio interfaces are among the most popular interfaces between man and machines. Such interfaces are based on microphones, whose efficiency expressed in terms of performance/power consumption is becoming one of the crucial parameters for the success on the market. In this chapter, the main specifications of typical microphone interfaces are illustrated to exhibit the advances in their development toward the maximization of their efficiency.

References

  1. 1.
    Hsu YC, et al. Issues in path toward integrated acoustic sensor system on chip. In: Proceedings of IEEE sensors; Lecce, Italy; 2008. p. 585–8.Google Scholar
  2. 2.
    Malcovati P, Maloberti F. Interface circuitry and microsystems. In: Korvink J, Paul O, editors. MEMS: a practical guide to design, analysis and applications. Dordrecht: Springer; 2005. p. 901–42.Google Scholar
  3. 3.
    Bajdechi O, Huijsing JH. A 1.8-V ΔΣ modulator interface for an electret microphone with on-chip reference. IEEE J Solid-State Circuits. 2002;37:279–85.CrossRefGoogle Scholar
  4. 4.
    Chiang CT, Huang YC. A 14-bit oversampled delta-sigma modulator for silicon condenser microphones. In: Proceedings of IEEE IMTC; Singapore; 2009. p. 1055–8.Google Scholar
  5. 5.
    Pernici S, et al. Fully integrated voiceband codec in a standard digital CMOS technology. IEEE J Solid-State Circuits. 2004;39:1331–4.CrossRefGoogle Scholar
  6. 6.
    van der Zwan EJ, Dijkmans EC. A 0.2-mW CMOS ΣΔ modulator for speech coding with 80 dB dynamic range. IEEE J Solid-State Circuits. 1996;31:1873–80.CrossRefGoogle Scholar
  7. 7.
    Zare-Hoseini H, et al. A low-power continuous-time ΔΣ modulator for electret microphone applications. In: Proceedings of IEEE ASSCC; Beijing, China; 2010. p. 1–4.Google Scholar
  8. 8.
    Jawed SA, et al. A 828-mW 1.8-V 80-dB dynamic-range readout interface for a MEMS capacitive microphone. In: Proceedings of ESSCIRC; Edinburgh, UK; 2008. p. 442–5.Google Scholar
  9. 9.
    Picolli L, et al. A 1.0-mW, 71-dB SNDR, fourth-order ΣΔ interface circuit for MEMS microphones. Analog Integr Circuits Sig Process. 2011;66:223–33.CrossRefGoogle Scholar
  10. 10.
    Le HB, et al. A regulator-free 84-dB DR audio-band ADC for compact digital microphones. In: Proceedings of IEEE ASSCC; Beijing, China; 2010. p. 1–4.Google Scholar
  11. 11.
    Citakovic J, et al. A compact CMOS MEMS microphone with 66-dB SNR. In: IEEE ISSCC digest of technical papers; San Francisco, USA; 2009. p. 350–1.Google Scholar
  12. 12.
    Weigold JW, et al. A MEMS condenser microphone for consumer applications. In: Proceedings of IEEE MEMS; Istanbul, Turkey; 2006. p. 86–9.Google Scholar
  13. 13.
    Scheeper PR, et al. A review of silicon microphones. Sensors Actuators A. 1994;44(1):1–11.CrossRefGoogle Scholar
  14. 14.
    Bergqvist J, Gobet J. Capacitive microphone with a surface micromachined backplate using electroplating technology. J Microelectromech Syst. 1994;3(2):69–75.CrossRefGoogle Scholar
  15. 15.
    Kasai T, et al. Novel concept for a MEMS microphone with dual channels for an ultrawide dynamic range. In: Proceedings of IEEE MEMS; Cancun, Mexico; 2011. p. 605–8.Google Scholar
  16. 16.
    Leinenbach C, et al. A new capacitive type MEMS microphone. In: Proceedings of IEEE MEMS; Wanchai, Hong Kong, China; 2010. p. 659–62.Google Scholar
  17. 17.
    Martin DT, et al. A micromachined dual-backplate capacitive microphone for aeroacoustic measurements. J Microelectromech Syst. 2007;16(6):1289–302.CrossRefGoogle Scholar
  18. 18.
    Zou QB, et al. Design and fabrication of silicon condenser microphone using corrugated diaphragm technique. J Microelectromech Syst. 1996;5(3):197–204.CrossRefGoogle Scholar
  19. 19.
    InvenSense Application Note AN-1003. Recommendations for mounting and connecting InvenSense MEMS microphones, Online.Google Scholar
  20. 20.
    Knowles Application Note AN-16. SiSonic design guide, Online.Google Scholar
  21. 21.
    Nicollini G, et al. A high-performance analog front-end 14-bit CODEC for 2.7-V digital cellular phones. IEEE J Solid-State Circuits. 1998;33:1158–67.CrossRefGoogle Scholar
  22. 22.
    Barbieri A, Nicollini G. 100+ dB A-weighted SNR microphone preamplifier with on-chip decoupling capacitors. IEEE J Solid-State Circuits. 2012;47:2737–50.CrossRefGoogle Scholar
  23. 23.
    Croce M, et al. Cap-less audio preamplifiers for silicon microphones. In: Proceedings of IEEE sensors, Orlando, FL, USA; 2016. p. 943–5.Google Scholar
  24. 24.
    Croce M, et al. MEMS microphone fully-integrated CMOS cap-less preamplifiers. In: Proceedings of IEEE PRIME, Giardini Naxos, Taormina, Italy; 2017. p. 37–40.Google Scholar
  25. 25.
    Jiang X, et al. A low-power, high-fidelity stereo audio CODEC in 0.13-μm CMOS. IEEE J Solid-State Circuits. 2012;47:1221–31.CrossRefGoogle Scholar
  26. 26.
    Du D, Odame KM. A bandwidth-adaptive preamplifier. IEEE J Solid-State Circuits. 2013;48:2142–53.CrossRefGoogle Scholar
  27. 27.
    Tsividis Y, et al. Internally varying analog circuits minimize power dissipation. IEEE Circuits Device Mag. 2003;19:63–72.CrossRefGoogle Scholar
  28. 28.
    De Berti C, et al. A 106-dB A-weighted DR low-power continuous-time ΣΔ modulator for MEMS microphones. IEEE J. Solid-State Circuits. 2016;51:1607–18.CrossRefGoogle Scholar
  29. 29.
    Murman B. ADC performance survey 1997–2017. Online. http://web.stanford.edu/~murmann/adcsurvey.html.
  30. 30.
    De Berti C, et al. Colored clock jitter model in audio continuous-time ΣΔ modulators. In: Proceedings of IEEE NEWCAS, Grenoble, France; 2015. p. 14B5/1–4.Google Scholar
  31. 31.
    Dörrer L, et al. A 3-mW 74-dB SNR 2-MHz continuous-time delta-sigma ADC with a tracking ADC quantizer in 0.13-μm CMOS. IEEE J Solid-State Circuits. 2005;40:2416–27.CrossRefGoogle Scholar
  32. 32.
    Nguyen K, et al. A 108-dB SNR, 1.1-mW oversampling audio DAC with a three-level DEM technique. IEEE J Solid-State Circuits. 2008;43:2592–600.CrossRefGoogle Scholar
  33. 33.
    Crespi L., et al. Audio digital-to-analog converter with enhanced dynamic range. US Patent Application No. 62/425,510, 2016.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lorenzo Crespi
    • 1
    Email author
  • Claudio De Berti
    • 1
  • Brian Friend
    • 1
  • Piero Malcovati
    • 2
  • Andrea Baschirotto
    • 3
  1. 1.SynapticsSan JoseUSA
  2. 2.University of PaviaPaviaItaly
  3. 3.University of Milano-BicoccaMilanItaly

Personalised recommendations