Time of Flight Imaging and Sensing for Mobile Applications

  • Neale A. W. DuttonEmail author
  • Tarek Al Abbas
  • Francescopaulo Mattioli Della Rocca
  • Neil Finlayson
  • Bruce Rae
  • Robert K. Henderson


Optical sensors, based on the time correlated single photon counting (TCSPC) technique, are found in a range of applications from medical to consumer. This chapter provides an overview of the challenges in TCSPC sensor design for mobile applications. We describe the design of a proof-of-concept TCSPC optical sensor with 10 GS/s conversion rate folded flash time to digital converter (TDC) and on-chip histogram generation, designed to minimize time-domain distortion and have high power efficiency. The proof of concept IC is fabricated in STMicroelectronics 130 nm SPAD foundry process. The system consumes 178.1 pJ per photon at 899 M photon/s, and the TDC achieves state of the art 0.48 pJ/S energy efficiency.



Salvatore Gnecchi and Luca Parmesan contributed to the design of the sensor. Oscar Almer contributed to the FPGA controller and measurement evaluation system.

Technical discussions with Pascal Mellot, Bruce Rae, Graeme Storm, Andrew Holmes, Lindsay Grant, Sara Pellegrini, and J. Kevin Moore have been influential in this research.

We are grateful to ST Crolles for silicon fabrication and ST for PhD student support for Francescopaulo Mattioli Della Rocca.

Tare Al Abbas acknowledges funding from The University of Edinburgh and PROTEUS project ( EPSRC grant number EP/K03197X/1).


  1. 1.
    Becker W. Advanced time-correlated single-photon counting techniques. Berlin/Heidelberg/New York: Springer; 2005.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Dutton NAW, et al. A time-correlated single-photon-counting sensor with 14 GS/S histogramming time-to-digital converter. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, 2015.Google Scholar
  4. 4.
    Finlayson N, Al Abbas T, Mattioli Della Rocca F, Almer O, Gnecchi S, Dutton NAW, Henderson RK. Hypervelocity time-of-flight characterisation of a 14GS/s histogramming CMOS SPAD sensor. In: Proceedings of SPIE 10111, quantum sensing and nano electronics and photonics XIV, 101112Z, 27 Jan 2017.Google Scholar
  5. 5.
    Dutton NAW, Al Abbas T, et al. A CMOS SPAD sensor with a multi-event folded flash time-to-digital converter for ultra-fast optical transient capture. IEEE Sens J. 2018;18(8):3163–73.CrossRefGoogle Scholar
  6. 6.
    Charbon E. Single-photon imaging in complementary metal oxide semiconductor processes. Philos Trans R Soc A. 2014;372:1–31.CrossRefGoogle Scholar
  7. 7.
    Arlt J, et al. A study of pile-up in integrated time-correlated single photon counting systems. Rev Sci Instrum. 2013;84(10):103–5.CrossRefGoogle Scholar
  8. 8.
    Tyndall D, et al. A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS. IEEE Trans Biomed Circuits Syst. 2012;6(6):562–70.CrossRefGoogle Scholar
  9. 9.
    Gnecchi S, et al. Digital silicon photomultipliers with OR/XOR pulse combining techniques. IEEE Trans Electron Devices. 2016;63(3):1105–10.CrossRefGoogle Scholar
  10. 10.
    Gnecchi S, et al. A comparative analysis between OR-based and XOR-based digital silicon photomultipliers for PET. In: Proceedings of IEEE nuclear science symposium, 2015.Google Scholar
  11. 11.
    Crotti M, Rech I, Ghioni M. Four channel, 40 ps resolution, fully integrated time-to-amplitude converter for time-resolved photon counting. IEEE J Solid-State Circuits. 2012;47(3):699–708.CrossRefGoogle Scholar
  12. 12.
    Favi C, Charbon E. A 17ps time-to-digital converter implemented in 65nm FPGA technology. In: Proceeding of the ACM/SIGDA international symposium on field programmable gate arrays, 2009, p. 113.Google Scholar
  13. 13.
    Richardson J, et al. A 32x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging. In: Custom integrated circuits conference 2009. CICC ’09. IEEE, 2009, p. 77–80.Google Scholar
  14. 14.
    Kalisz J. Review of methods for time interval measurements with picosecond resolution. Merologia. 2004;41:17–32.CrossRefGoogle Scholar
  15. 15.
    Roberts G, Ali-Bakhshian M. A brief introduction to time-to-digital and digital-to-time converters. IEEE Trans Circuits Syst II Exp Briefs. 2010;57(3):153–7.CrossRefGoogle Scholar
  16. 16.
    Dutton N, et al. Multiple-event direct to histogram TDC in 65nm FPGA technology. In: Proceedings of IEEE PRIME conference, 2014.Google Scholar
  17. 17.
    Yousif AS, et al. A fine resolution TDC architecture for next generation PET imaging. IEEE Trans Nucl Sci. 2007;54(5):1574–82.CrossRefGoogle Scholar
  18. 18.
    Haraszti TP. CMOS memory circuits. Norwell: Kluwer; 2000.Google Scholar
  19. 19.
    Doernberg J, Lee H-S, Hodges DA. Full-speed testing of A/D converters. IEEE J Solid-State Circuits. 1984;SSC-19(6):820–7.CrossRefGoogle Scholar
  20. 20.
    Richardson JA, Grant LA, Henderson RK. Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology. IEEE Photon Technol Lett. 2009;21(14):1020–2.CrossRefGoogle Scholar
  21. 21.
    Niclass C, Soga M, Matsubara H, Kato S, Kagami M. A 100-m range 10-frame/s 340x96-pixel time-of-flight depth sensor in 0.18-μm CMOS. IEEE J Solid-State Circuits. 2013;48(2):559–72.CrossRefGoogle Scholar
  22. 22.
    Elshazly A, Rao S, Young B, Hanumolu PK. A noise-shaping time-to-digital converter using switched-ring oscillators—analysis, design, and measurement techniques. IEEE J Solid-State Circuits. 2014;49(5):1184–1197.CrossRefGoogle Scholar
  23. 23.
    Erdogan AT, Walker R, Finlayson N, Krstajić N, Williams GOS, Henderson RK. A 16.5 Giga events/s 1024 × 8 SPAD line sensor with per-pixel zoomable 50ps-6.4ns/bin histogramming TDC. In: Proceedings of VLSI symposia, 2017.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Neale A. W. Dutton
    • 1
    Email author
  • Tarek Al Abbas
    • 2
  • Francescopaulo Mattioli Della Rocca
    • 1
    • 2
  • Neil Finlayson
    • 2
  • Bruce Rae
    • 1
  • Robert K. Henderson
    • 2
  1. 1.Imaging Sub-Group, STMicroelectronicsEdinburghUK
  2. 2.School of Engineering, University of EdinburghEdinburghUK

Personalised recommendations