Advertisement

Universal and Dimensional Rigidities

  • Abdo Y. Alfakih
Chapter

Abstract

In this chapter, we study the universal rigidity problem of bar frameworks and the related problem of dimensional rigidity. The main tools in tackling these two problems are the Cayley configuration spectrahedron \(\mathcal{F}\), defined in ( 8.10), and Ω, the stress matrix, defined in ( 8.13). The more general problem of universally linked pair of nonadjacent nodes is also studied and the results are interpreted in terms of the Strong Arnold Property and the notion of nondegeneracy in semidefinite programming.

References

  1. 6.
    A.Y. Alfakih, On dimensional rigidity of bar-and-joint frameworks. Discret. Appl. Math. 155, 1244–1253 (2007)MathSciNetCrossRefGoogle Scholar
  2. 9.
    A.Y. Alfakih, On the universal rigidity of generic bar frameworks. Contrib. Discret. Math. 5, 7–17 (2010)MathSciNetzbMATHGoogle Scholar
  3. 11.
    A.Y. Alfakih, On stress matrices of chordal bar frameworks in general positions, 2012. arXiv/1205.3990Google Scholar
  4. 13.
    A.Y. Alfakih, Universal rigidity of bar frameworks in general position: a Euclidean distance matrix approach, in Distance Geometry: Theory, Methods, and Applications, ed. by A. Mucherino, C. Lavor, L. Liberti, N. Maculan (Springer, Berlin, 2013), pp. 3–22CrossRefGoogle Scholar
  5. 14.
    A.Y. Alfakih, On Farkas lemma and dimensional rigidity of bar frameworks. Linear Algebra Appl. 486, 504–522 (2015)MathSciNetCrossRefGoogle Scholar
  6. 16.
    A.Y. Alfakih, Universal rigidity of bar frameworks via the geometry of spectrahedra. J. Glob. Optim. 67, 909–924 (2017)MathSciNetCrossRefGoogle Scholar
  7. 17.
    A.Y. Alfakih, V.-H. Nyugen, On affine motions and universal rigidity of tensegrity frameworks. Linear Algebra Appl. 439, 3134–3147 (2013)MathSciNetCrossRefGoogle Scholar
  8. 20.
    A.Y. Alfakih, Y. Ye, On affine motions and bar frameworks in general positions. Linear Algebra Appl. 438, 31–36 (2013)MathSciNetCrossRefGoogle Scholar
  9. 22.
    A.Y. Alfakih, N. Taheri, Y. Ye, On stress matrices of (d + 1)-lateration frameworks in general position. Math. Program. 137, 1–17 (2013)MathSciNetCrossRefGoogle Scholar
  10. 26.
    F. Alizadeh, J.A. Haeberly, M.L. Overton, Complementarity and nondegeneracy in semidefinite programming. Math. Program. Ser. B 77, 111–128 (1997)MathSciNetzbMATHGoogle Scholar
  11. 39.
    L.W. Beineke, R.E. Pippert, The number of labeled k-dimensional trees. J. Combin. Theory 6, 200–205 (1969)MathSciNetCrossRefGoogle Scholar
  12. 56.
    Y. Colin De Verdière, Sur un nouvel invariant des graphes et un critère de planarité. J. Combin. Theory Ser B 50, 11–21 (1990)MathSciNetCrossRefGoogle Scholar
  13. 57.
    R. Connelly, Rigidity and energy. Invent. Math. 66, 11–33 (1982)MathSciNetCrossRefGoogle Scholar
  14. 60.
    R. Connelly, Tensegrity structures: why are they stable? in Rigidity Theory and Applications, ed. by M.F. Thorpe, P.M. Duxbury (Kluwer Academic/Plenum Publishers, New York, 1999), pp. 47–54Google Scholar
  15. 61.
    R. Connelly, Generic global rigidity. Discret. Comput. Geom. 33, 549–563 (2005)MathSciNetCrossRefGoogle Scholar
  16. 63.
    R. Connelly, S. Gortler, Iterative universal rigidity. Discret. Comput. Geom. 53, 847–877 (2015)MathSciNetCrossRefGoogle Scholar
  17. 64.
    R. Connelly, S. Gortler, Universal rigidity of complete bipartite graphs. Discret. Comput. Geom. 57, 281–304 (2017)MathSciNetCrossRefGoogle Scholar
  18. 90.
    S.J. Gortler, D.P. Thurston, Characterizing the universal rigidity of generic frameworks. Discret. Comput. Geom. 51, 1017–1036 (2014)MathSciNetCrossRefGoogle Scholar
  19. 118.
    T. Jordán, V.-H. Nguyen, On universal rigid frameworks on the line. Contrib. Discret. Math. 10, 10–21 (2015)zbMATHGoogle Scholar
  20. 132.
    M. Laurent, A. Varvitsiotis, Positive semidefinite matrix completion, universal rigidity and the strong Arnold property. Linear Algebra Appl. 452, 292–317 (2014)MathSciNetCrossRefGoogle Scholar
  21. 138.
    L. Lovász, Geometric representations of graphs. Unpublished lecture notes, 2016Google Scholar
  22. 177.
    A.M.-C. So, Semidefinite Programming Approach to the Graph Realization Problem: Theory, Applications and Extensions. PhD thesis, Stanford University, 2007Google Scholar
  23. 179.
    A.M.-C. So, Y. Ye, Theory of semidefinite programming for sensor network localization. Math. Prog. Ser. B 109, 367–384 (2007)MathSciNetCrossRefGoogle Scholar
  24. 201.
    Z. Zhu, A.M.-C. So, Y. Ye, Universal rigidity: towards accurate and efficient localization of wireless networks, in Proceedings IEEE INFOCOM, 2010Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdo Y. Alfakih
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of WindsorWindsorCanada

Personalised recommendations