Advertisement

The Dilemmas of Formulating Theory-Informed Design Guidelines for a Video Enhanced Rubric

  • Kevin AckermansEmail author
  • Ellen Rusman
  • Saskia Brand-Gruwel
  • Marcus Specht
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 829)

Abstract

Learners aiming to master a complex skill may benefit from the combination of abstract information found in a text-based analytical rubric and concrete information provided by a video modeling example. In this paper, we address the design dilemmas of combining video modeling examples and rubrics into a Video Enhanced Rubric. We propose a model to address these design dilemma’s and develop our first prototype based on this model. We review the first prototype through a two-stage international expert validation session. In the first stage, 20 experts are asked to design a user interface for the Video Enhanced Rubric. In the second stage, 20 experts are asked to perform an expert appraisal of our first prototype. The preliminary results of the expert validation session are subsequently analyzed using Sauli, Cattaneo and van der Meij’s Framework for Developing Instructional Hypervideo to detect common design suggestions. Following the results of the expert validation, we developed a second prototype of the Video Enhanced Rubric. With the design guidelines of a Video Enhanced Rubric, we aim to improve the formative assessment and mastery of complex skills by fostering learner’s mental model development and the quality (consistency, concreteness) of both given as well as received feedback. On a more general note, we expect the design dilemmas addressed in this paper to inform researchers who aim to apply theoretical multimedia design guidelines to formative assessment practices with rubrics.

Keywords

Video Rubrics (Formative) assessment Complex skills Mental models 

Notes

Acknowledgements

We would like to gratefully acknowledge the contribution of the Viewbrics project, that is funded by the practice-oriented research program of the Netherlands Initiative for Education Research (NRO), part of The Netherlands Organisation for Scientific Research (NWO).

References

  1. 1.
    Panadero, E., Romero, M.: To rubric or not to rubric? The effects of self-assessment on self-regulation, performance and self-efficacy. Assess. Educ. Princ. Policy Pract. 21, 133–148 (2014).  https://doi.org/10.1080/0969594X.2013.877872CrossRefGoogle Scholar
  2. 2.
    Rusman, E., Martínez-Monés, A., Boon, J., et al.: Gauging teachers’ needs with regard to technology-enhanced formative assessment (TEFA) of 21st century skills in the classroom. In: Kalz, M., Ras, E. (eds.) CAA 2014. CCIS, vol. 439, pp. 1–14. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08657-6_1CrossRefGoogle Scholar
  3. 3.
    Thijs, A., Fisser, P., van der Hoeven, M.: 21E Eeuwse Vaardigheden in Het Curriculum Van Het Funderend Onderwijs. Slo 128 (2014)Google Scholar
  4. 4.
    Ackermans, K., Rusman, E., Brand-Gruwel, S., Specht, M.: A first step towards synthesizing rubrics and video for the formative assessment of complex skills. In: Joosten-ten Brinke, D., Laanpere, M. (eds.) TEA 2016. CCIS, vol. 653, pp. 1–10. Springer International Publishing, Cham (2017).  https://doi.org/10.1007/978-3-319-57744-9_1CrossRefGoogle Scholar
  5. 5.
    Westera, W.: Reframing contextual learning: anticipating the virtual extensions of context 14, 201–212 (2011)Google Scholar
  6. 6.
    Matthews, W.J., Buratto, L.G., Lamberts, K.: Exploring the memory advantage for moving scenes. Vis. Cogn. 18, 1393–1420 (2010).  https://doi.org/10.1080/13506285.2010.492706CrossRefGoogle Scholar
  7. 7.
    Moreno, R., Mayer, R.: Interactive multimodal learning environments. Educ. Psychol. Rev. 19, 309–326 (2007).  https://doi.org/10.1007/s10648-007-9047-2CrossRefGoogle Scholar
  8. 8.
    Dousay, T.A.: Effects of redundancy and modality on the situational interest of adult learners in multimedia learning. Educ. Technol. Res. Dev. 64, 1–21 (2016).  https://doi.org/10.1007/s11423-016-9456-3CrossRefGoogle Scholar
  9. 9.
    Park, B., Plass, J.L., Brünken, R.: Cognitive and affective processes in multimedia learning. Learn. Instr. 29, 125–127 (2014).  https://doi.org/10.1016/j.learninstruc.2013.05.005CrossRefGoogle Scholar
  10. 10.
    Brookhart, S.M., Chen, F.: The quality and effectiveness of descriptive rubrics. Educ. Rev. 1911, 1–26 (2014).  https://doi.org/10.1080/00131911.2014.929565CrossRefGoogle Scholar
  11. 11.
    König, C., Hofmann, T., Bruder, R.: Application of the user-centred design process according ISO 9241-210 in air traffic control. Work 41, 167–174 (2012).  https://doi.org/10.3233/WOR-2012-1005-167CrossRefGoogle Scholar
  12. 12.
    Clark, I.: Formative assessment: assessment is for self-regulated learning. Educ. Psychol. Rev. 24, 205–249 (2012).  https://doi.org/10.1007/s10648-011-9191-6CrossRefGoogle Scholar
  13. 13.
    Eitam, B., Kennedy, P.M., Higgins, E.T.: Motivation from control. Exp. Brain Res. 229, 475–484 (2013).  https://doi.org/10.1007/s00221-012-3370-7CrossRefGoogle Scholar
  14. 14.
    Leutner, D.: Motivation and emotion as mediators in multimedia learning. Learn. Instr. 29, 174–175 (2014).  https://doi.org/10.1016/j.learninstruc.2013.05.004CrossRefGoogle Scholar
  15. 15.
    Vollmeyer, R., Rheinberg, F.: Motivational effects on self-regulated learning with different tasks. Educ. Psychol. Rev. 18, 239–253 (2006).  https://doi.org/10.1007/s10648-006-9017-0CrossRefGoogle Scholar
  16. 16.
    Mayer, R.E.: Incorporating motivation into multimedia learning. Learn. Instr. 29, 171–173 (2014).  https://doi.org/10.1016/j.learninstruc.2013.04.003CrossRefGoogle Scholar
  17. 17.
    Schank, R.C., Fano, A., Bell, B., Jona, M.: The design of goal-based scenarios. J. Learn. Sci. 3, 305–345 (1994).  https://doi.org/10.1207/s15327809jls0304_2CrossRefGoogle Scholar
  18. 18.
    Van Merriënboer, J.J.G., Kester, L.: The four-component instructional design model: multimedia principles in environments for complex learning. In: Mayer, R. (ed.) Cambridge Handbook of Multimedia Learning, pp. 104–148. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  19. 19.
    Van Merriënboer, J.J.G., Sluijsmans, D.M.A.: Toward a synthesis of cognitive load theory, four-component instructional design, and self-directed learning. Educ. Psychol. Rev. 21, 55–66 (2009).  https://doi.org/10.1007/s10648-008-9092-5CrossRefGoogle Scholar
  20. 20.
    Mayer, R.E., Moreno, R.: Nine ways to reduce cognitive load in multimedia learning. Educ. Psychol. 38, 43–52 (2003).  https://doi.org/10.1207/S15326985EP3801_6CrossRefGoogle Scholar
  21. 21.
    Mayer, R.E.: Multimedia Learning, 2nd edn. Cambridge University Press, Cambridge (2009).  https://doi.org/10.1007/s13398-014-0173-7.2
  22. 22.
    Janssen-Noordman, A.M., Van Merriënboer, J.J.G.: Innovatief Onderwijs Ontwerpen. Wolters-Noordhoff, Groningen (2002)Google Scholar
  23. 23.
    Panadero, E., Jonsson, A.: The use of scoring rubrics for formative assessment purposes revisited: a review. Educ. Res. Rev. 9, 129–144 (2013).  https://doi.org/10.1016/j.edurev.2013.01.002CrossRefGoogle Scholar
  24. 24.
    Mertler, C.: Designing scoring rubrics for your classroom. Pract. Assess. Res. Eval. 7, 1–10 (2001)Google Scholar
  25. 25.
    Ma, W.J., Husain, M., Bays, P.M., et al.: Changing concepts of working memory. Nat. Neurosci. 17, 347–356 (2014).  https://doi.org/10.1038/nn.3655CrossRefGoogle Scholar
  26. 26.
    Luck, S.J., Vogel, E.: The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).  https://doi.org/10.1038/36846CrossRefGoogle Scholar
  27. 27.
    Spanjers, I.A.E., Van Gog, T., Wouters, P., Van Merriënboer, J.J.G.: Explaining the segmentation effect in learning from animations: the role of pausing and temporal cueing. Comput. Educ. 59, 274–280 (2012).  https://doi.org/10.1016/j.compedu.2011.12.024CrossRefGoogle Scholar
  28. 28.
    Hoogerheide, V., Loyens, S.M.M., van Gog, T.: Effects of creating video-based modeling examples on learning and transfer. Learn. Instr. 33, 108–119 (2014).  https://doi.org/10.1016/j.learninstruc.2014.04.005CrossRefGoogle Scholar
  29. 29.
    Mátrai, R., Kosztyán, Z.T., Sik-Lányi, C.: Navigation methods of special needs users in multimedia systems. Comput. Hum. Behav. 24, 1418–1433 (2008).  https://doi.org/10.1016/j.chb.2007.07.015CrossRefGoogle Scholar
  30. 30.
    Cattaneo, A., Van Der Meij, H., Aprea, C., et al.: A model for designing hypervideo-based instructional scenarios. Paper submitted for publicationGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kevin Ackermans
    • 1
    Email author
  • Ellen Rusman
    • 1
  • Saskia Brand-Gruwel
    • 1
  • Marcus Specht
    • 1
  1. 1.Welten InstituteOpen UniversiteitHeerlenThe Netherlands

Personalised recommendations