Advertisement

Private Comparison Protocol and Its Application to Range Queries

  • Tushar Kanti SahaEmail author
  • Mayank
  • Deevashwer
  • Takeshi Koshiba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10794)

Abstract

We consider the problem of private comparison protocol and its application to private range queries for accessing a private database. Very recently, Saha and Koshiba (NBiS 2017) proposed an efficient privacy-preserving comparison protocol using ring-LWE based somewhat homomorphic encryption (SwHE) in the semi-honest model. The protocol took 124 ms (resp., 125 ms) for comparing two 16-bit (resp., 32-bit) integers. But this protocol is not efficient enough to process range queries to a large database where several thousand comparisons are required. In this paper, we propose an efficient parity-based private comparison protocol and show its application to private range queries with a modified packing method. Here the security of the protocol is also ensured by ring-LWE based SwHE in the same semi-honest model. Our practical experiments show that our comparison protocol enables us to do a single comparison in 84 ms (resp., 85 ms) for 16-bit (resp., 32-bit) integers which is more efficient than Saha et al.’s protocol. Besides, it takes about 0.499 s (resp., 2.247 s) to process a 3-out-of-11 range query in a database of 100 records (resp., 1000 records) including 11 attributes, which outperform state of the art.

Keywords

Comparison protocol Range query Batch technique Somewhat homomorphic encryption 

Notes

Acknowledgments

This work is supported in part by JSPS Grant-in-Aids for Scientific Research (A) JP16H01705 and for Scientific Research (B) JP17H01695.

References

  1. 1.
    Barker, E.: Recommendation for key management. In: NIST Special Publication 800–57 Part 1 Rev. 4, NIST (2016)Google Scholar
  2. 2.
    Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38980-1_7CrossRefGoogle Scholar
  3. 3.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 309–325. ACM (2012)Google Scholar
  4. 4.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_29CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_1CrossRefGoogle Scholar
  6. 6.
    Cheon, J.H., Kim, M., Kim, M.: Optimized search-and-compute circuits and their application to query evaluation on encrypted data. IEEE Trans. Inf. Forensics Secur. 11(1), 188–199 (2016)CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Geisler, M., Krøigård, M.: Homomorphic encryption and secure comparison. Int. J. Appl. Crypt. 1(1), 22–31 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on Theory of Computing – STOC 2009, pp. 169–178. ACM, New York (2009)Google Scholar
  9. 9.
    Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 1–21. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37682-5_1CrossRefGoogle Scholar
  10. 10.
    Kantarcioglu, M., Nix, R., Vaidya, J.: An efficient approximate protocol for privacy-preserving association rule mining. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 515–524. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01307-2_48CrossRefGoogle Scholar
  11. 11.
    Kim, M., Lee, H.T., Ling, S., Ren, S.Q., Tan, B.H.M., Wang, H.: Better security for queries on encrypted databases. IACR Cryptology ePrint Archive, 2016/470 (2016)Google Scholar
  12. 12.
    Kim, M., Lee, H.T., Ling, S., Wang, H.: On the efficiency of FHE-based private queries. IEEE Trans. Dependable and Secure Comput. (to appear).  https://doi.org/10.1109/TDSC.2016.2568182
  13. 13.
    Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: ACM Workshop on Cloud Computing Security Workshop, CCSW 2011, pp. 113–124. ACM, New York (2011)Google Scholar
  14. 14.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_16CrossRefGoogle Scholar
  15. 15.
    Saha, T. K., Ali, A.B.M.S.: Storage cost minimizing in cloud - a proposed novel approach based on multiple key cryptography. In: 1st Asia-Pacific World Congress on Computer Science and Engineering (APWConCSE), pp. 1–9. IEEE (2014)Google Scholar
  16. 16.
    Saha, T. K., Koshiba, T.: Private equality test using ring-LWE somewhat homomorphic encryption, In: 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWConCSE), pp. 1–9. IEEE (2016).  https://doi.org/10.1109/APWC-on-CSE.2016.013
  17. 17.
    Saha, T.K., Koshiba, T.: Private conjunctive query over encrypted data. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 149–164. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57339-7_9CrossRefGoogle Scholar
  18. 18.
    Saha, T.K., Mayank, Koshiba, T.: Efficient protocols for private database queries. In: Livraga, G., Zhu, S. (eds.) Data and Applications Security and Privacy XXXI. DBSec 2017. LNCS, vol. 10359, pp. 337–348. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61176-1_19CrossRefGoogle Scholar
  19. 19.
    Saha, T. K., Koshiba, T.: Privacy-preserving equality test towards big data. In: Proceedings of the 10th International Symposium on Foundations & Practice of Security, FPS (2017)Google Scholar
  20. 20.
    Saha, T.K., Koshiba, T.: An efficient privacy-preserving comparison protocol. In: Barolli, L., Enokido, T., Takizawa, M. (eds.) NBiS 2017. LNDECT, vol. 7, pp. 553–565. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-65521-5_48CrossRefGoogle Scholar
  21. 21.
    The PARI\(\sim \)Group, PARI/GP version 2.7.5, Bordeaux (2014). http://pari.math.u-bordeaux.fr/
  22. 22.
    Xue, K., Li, S., Hong, J., Xue, Y., Yu, N., Hong, P.: Two-cloud secure database for numeric-related SQL range queries with privacy preserving. IEEE Trans. Inf. Forensics Secur. 12(7), 1596–1608 (2017)CrossRefGoogle Scholar
  23. 23.
    Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE (1982)Google Scholar
  24. 24.
    Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practical Packing Method in Somewhat Homomorphic Encryption. In: Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.) DPM/SETOP -2013. LNCS, vol. 8247, pp. 34–50. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54568-9_3CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tushar Kanti Saha
    • 1
    Email author
  • Mayank
    • 2
  • Deevashwer
    • 2
  • Takeshi Koshiba
    • 3
  1. 1.Division of Mathematics, Electronics, and Informatics, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  2. 2.Department of Computer Science and EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  3. 3.Faculty of Education and Integrated Arts and SciencesWaseda UniversityTokyoJapan

Personalised recommendations