Advertisement

Processing of Polymer Blends, Emphasizing: Melt Compounding; Influence of Nanoparticles on Blend Morphology and Rheology; Reactive Processing in Ternary Systems; Morphology–Property Relationships; Performance and Application Challenges; and Opportunities and Future Trends

  • Reza Salehiyan
  • Suprakas Sinha Ray
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 278)

Abstract

This chapter discusses the structure-properties of immiscible polymer blends, focusing on the effects of compatibilization. It has been discussed that the morphology of immiscible blends governs their final properties and thus end-use applications. Therefore, refining the morphologies via different routes such as reactive or physical compatibilization methods was suggested. Among the possible compatibilization methods, the use of nanoparticles has recently gained popularity as their large surface areas lend them additional reinforcing characteristics. However, it has been shown that localization of nanoparticles within blends plays a determinant role in refining the blend morphologies. In comparison, nanoparticles located at interfaces exhibit the most efficient contribution to both compatibilization and the blend properties, by acting as a physical shield against coalescence.

Keywords

Polymer blends Compatibilization Nanoparticles Interface Interfacial tension 

References

  1. 1.
    Paul D, Walsh D, Higgins J (1985) Polymer blends and mixtures. NATO ASI Series E Appl Sci 1Google Scholar
  2. 2.
    Taguet A, Cassagnau P, Lopez-Cuesta JM (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39:1526–1563CrossRefGoogle Scholar
  3. 3.
    Utracki LA, Weiss RA (1989) Multiphase polymers: blends and ionomers. American Chemical SocietyGoogle Scholar
  4. 4.
    Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc Royal Soc London Ser A Contain Papers Math Phys Char 138:41–48ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Nienow AW, Edwards M, Harnby N (1997) Mixing in the process industries: Butterworth-HeinemannGoogle Scholar
  6. 6.
    Ess JW, Hornsby PR (1986) Characterisation of distributive mixing in thermoplastics compositions. Polym Test 6:205–218CrossRefGoogle Scholar
  7. 7.
    Minale M, Mewis J, Moldenaers P (1998) Study of the morphological hysteresis in immiscible polymer blends. AIChE J 44:943–950CrossRefGoogle Scholar
  8. 8.
    Minale M, Moldenaers P, Mewis J (1997) Effect of shear history on the morphology of immiscible polymer blends. Macromolecules 30:5470–5475ADSCrossRefGoogle Scholar
  9. 9.
    Janssen JMH, Meijer HEH (1995) Dynamics of liquid-liquid mixing: A 2-zone model. Polym Eng Sci 35:1766–1780CrossRefGoogle Scholar
  10. 10.
    Van Puyvelde P, Velankar S, Mewis J, Moldenaers P, Leuven KU (2002) Effect of marangoni stresses on the deformation and coalescence in compatibilized immiscible polymer blends. Polym Eng Sci 42:1956–1964CrossRefGoogle Scholar
  11. 11.
    Van Puyvelde P, Oommen Z, Koets P, Groeninckx G, Moldenaers P, Leuven KU et al (2003) Effect of reactive compatibilization on the interfacial slip in nylon-6/EPR blends. Polym Eng Sci 43:71–77CrossRefGoogle Scholar
  12. 12.
    Silva J, Machado A, Moldenaers P, Maia J (2010) The effect of interfacial properties on the deformation and relaxation behavior of PMMA/PS blends. J Rheol 54:797–813ADSCrossRefGoogle Scholar
  13. 13.
    Saleem M, Baker WE (1990) In situ reactive compatibilization in polymer blends: Effects of functional group concentrations. J Appl Polym Sci 39:655–678CrossRefGoogle Scholar
  14. 14.
    Pietrasanta Y, Robin JJ, Torres N, Boutevin B (1999) Reactive compatibilization of HDPE/PET blends by glycidyl methacrylate functionalized polyolefins. Macromol Chem Phys 200:142–149CrossRefGoogle Scholar
  15. 15.
    Sailer C, Handge UA (2007) Melt viscosity, elasticity, and morphology of reactively compatibilized polyamide 6/styrene–acrylonitrile blends in shear and elongation. Macromolecules 40:2019–2028ADSCrossRefGoogle Scholar
  16. 16.
    Triacca VJ, Ziaee S, Barlow JW, Keskkula H, Paul DR (1991) Reactive compatibilization of blends of nylon 6 and ABS materials. Polymer 32:1401–1413CrossRefGoogle Scholar
  17. 17.
    Huang C-C, Chang F-C (1997) Reactive compatibilization of polymer blends of poly(butylene terephthalate) (PBT) and polyamide-6,6 (PA66): 1. Rheol Therm Prop Polym 38:2135–2141Google Scholar
  18. 18.
    Maani A, Blais B, Heuzey M-C, Carreau PJ (2012) Rheological and morphological properties of reactively compatibilized thermoplastic olefin (TPO) blends a. J Rheol 56:625–647ADSCrossRefGoogle Scholar
  19. 19.
    DeLeo C, Walsh K, Velankar S (2011) Effect of compatibilizer concentration and weight fraction on model immiscible blends with interfacial crosslinking. J Rheol 55:713–731ADSCrossRefGoogle Scholar
  20. 20.
    Huo Y, Groeninckx G, Moldenaers P (2007) Rheology and morphology of polystyrene/polypropylene blends with in situ compatibilization. Rheol Acta 46:507–520CrossRefGoogle Scholar
  21. 21.
    Omonov T, Harrats C, Groeninckx G, Moldenaers P (2007) Anisotropy and instability of the co-continuous phase morphology in uncompatibilized and reactively compatibilized polypropylene/polystyrene blends. Polymer 48:5289–5302CrossRefGoogle Scholar
  22. 22.
    Li J, Ma G, Sheng J (2010) Linear viscoelastic characteristics of in situ compatiblized binary polymer blends with viscoelastic properties of components variable. J Polym Sci Part B Polym Phys 48:1349–1362ADSCrossRefGoogle Scholar
  23. 23.
    Díaz MF, Barbosa SE, Capiati NJ (2005) Improvement of mechanical properties for PP/PS blends by in situ compatibilization. Polymer 46:6096–6101CrossRefGoogle Scholar
  24. 24.
    Shahbazi K, Aghjeh MR, Abbasi F, Meran MP, Mazidi MM (2012) Rheology, morphology and tensile properties of reactive compatibilized polyethylene/polystyrene blends via Friedel-crafts alkylation reaction. Polym Bull 69:241–259CrossRefGoogle Scholar
  25. 25.
    Wang L, Ma W, Gross RA, McCarthy SP (1998) Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone). Polym Degrad Stab 59:161–168CrossRefGoogle Scholar
  26. 26.
    Harada M, Iida K, Okamoto K, Hayashi H, Hirano K (2008) Reactive compatibilization of biodegradable poly (lactic acid)/poly (ε-caprolactone) blends with reactive processing agents. Polym Eng Sci 48:1359–1368CrossRefGoogle Scholar
  27. 27.
    Semba T, Kitagawa K, Ishiaku US, Hamada H (2006) The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J Appl Polym Sci 101:1816–1825CrossRefGoogle Scholar
  28. 28.
    Kumar M, Mohanty S, Nayak S, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Biores Technol 101:8406–8415CrossRefGoogle Scholar
  29. 29.
    Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914CrossRefGoogle Scholar
  30. 30.
    Ma P, Cai X, Zhang Y, Wang S, Dong W, Chen M et al (2014) In-situ compatibilization of poly (lactic acid) and poly (butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym Degrad Stab 102:145–151CrossRefGoogle Scholar
  31. 31.
    Ojijo V, Sinha Ray S, Sadiku R (2013) Toughening of biodegradable polylactide/poly (butylene succinate-co-adipate) blends via in situ reactive compatibilization. ACS Appl Mater Interf 5:4266–4276CrossRefGoogle Scholar
  32. 32.
    Ojijo V, Ray SS (2015) Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 80:1–17CrossRefGoogle Scholar
  33. 33.
    Gu L, Nessim EE, Macosko CW (2018) Reactive compatibilization of poly(lactic acid)/polystyrene blends and its application to preparation of hierarchically porous poly(lactic acid). Polymer 134:104–116CrossRefGoogle Scholar
  34. 34.
    Kim S-J, Shin B-S, Hong J-L, Cho W-J, Ha C-S (2001) Reactive compatibilization of the PBT/EVA blend by maleic anhydride. Polymer 42:4073–4080CrossRefGoogle Scholar
  35. 35.
    Van Puyvelde P, Moldenaers P (2005) Rheology and morphology development in immiscible polymer blends. Rheol Rev 2005:101Google Scholar
  36. 36.
    Van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Interf Sci 6:457–463CrossRefGoogle Scholar
  37. 37.
    Sundararaj U, Macosko C (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657ADSCrossRefGoogle Scholar
  38. 38.
    Tao F, Auhl D, Baudouin A-C, Stadler FJ, Bailly C (2013) Influence of multiwall carbon nanotubes trapped at the interface of an immiscible polymer blend on interfacial tension. Macromol Chem Phys 214:350–360CrossRefGoogle Scholar
  39. 39.
    Ray SS, Bousmina M, Maazouz A (2006) Morphology and properties of organoclay modified polycarbonate/poly(methyl methacrylate) blend. Polym Eng Sci 46:1121–1129CrossRefGoogle Scholar
  40. 40.
    Salehiyan R, Song HY, Choi WJ, Hyun K (2015) Characterization of effects of silica nanoparticles on (80/20) PP/PS Blends via nonlinear rheological properties from fourier transform rheology. Macromolecules 48:4669–4679ADSCrossRefGoogle Scholar
  41. 41.
    Elias L, Fenouillot F, Majeste JC, Cassagnau P (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48:6029–6040CrossRefGoogle Scholar
  42. 42.
    Sinha Ray S, Pouliot S, Bousmina M, Utracki LA (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer 45:8403–8413CrossRefGoogle Scholar
  43. 43.
    Sinha Ray S, Bousmina M (2005) Compatibilization efficiency of organoclay in an immiscible polycarbonate/poly (methyl methacrylate) blend. Macromol Rapid Commun 26:450–455CrossRefGoogle Scholar
  44. 44.
    Fenouillot F, Cassagnau P, Majesté JC (2009) Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50:1333–1350CrossRefGoogle Scholar
  45. 45.
    Zhu Y, Ma H-Y, Tong L-F, Fang Z-P (2008) Cutting effect” of organoclay platelets in compatibilizing immiscible polypropylene/polystyrene blends. J Zhejiang Univ Sci A 9:1614–1620CrossRefGoogle Scholar
  46. 46.
    Kelnar I, Kratochvíl J, Kaprálková L, Zhigunov A, Nevoralová M (2017) Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. J Mech Behav Biomed Mater 71:271–278CrossRefGoogle Scholar
  47. 47.
    Kelnar I, Kratochvíl J, Kaprálková L, Špitálsky Z, Ujčič M, Zhigunov A, et al (2017) Effect of graphene oxide on structure and properties of impact modified polyamide 6. Polym Plastics Technol Eng null–nullGoogle Scholar
  48. 48.
    Yousfi M, Livi S, Dumas A, Crépin-Leblond J, Greenhill-Hooper M, Duchet-Rumeau J (2014) Compatibilization of polypropylene/polyamide 6 blends using new synthetic nanosized talc fillers: morphology, thermal, and mechanical properties. J Appl Polym Sci 131: n/aGoogle Scholar
  49. 49.
    Salehiyan R, Song HY, Kim M, Choi WJ, Hyun K (2016) Morphological evaluation of PP/PS blends filled with different types of clays by nonlinear rheological analysis. Macromolecules 49:3148–3160ADSCrossRefGoogle Scholar
  50. 50.
    Salehiyan R, Yoo Y, Choi WJ, Hyun K (2014) Characterization of morphologies of compatibilized polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from ft-rheology. Macromolecules 47:4066–4076ADSCrossRefGoogle Scholar
  51. 51.
    Thareja P, Moritz K, Velankar SS (2010) Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: particles can increase or decrease drop size. Rheol Acta 49:285–298CrossRefGoogle Scholar
  52. 52.
    Zou Z-M, Sun Z-Y, An L-J (2014) Effect of fumed silica nanoparticles on the morphology and rheology of immiscible polymer blends. Rheol Acta 53:43–53CrossRefGoogle Scholar
  53. 53.
    Nagarkar S, Velankar SS (2013) Rheology and morphology of model immiscible polymer blends with monodisperse spherical particles at the interface. J Rheol 57:901–926ADSCrossRefGoogle Scholar
  54. 54.
    Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271CrossRefGoogle Scholar
  55. 55.
    Wu S, Dekker M (1982) Polymer interface and adhesionGoogle Scholar
  56. 56.
    Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  57. 57.
    Good RJ, Girifalco LA, Kraus G (1958) A theory for estimation of interfacial energies. II. Application to surface thermodynamics of teflon and graphite. J Phys Chem 62:1418–1421CrossRefGoogle Scholar
  58. 58.
    Baudouin A-C, Bailly C, Devaux J (2010) Interface localization of carbon nanotubes in blends of two copolymers. Polym Degrad Stab 95:389–398CrossRefGoogle Scholar
  59. 59.
    Baudouin A-C, Devaux J, Bailly C (2010) Localization of carbon nanotubes at the interface in blends of polyamide and ethylene–acrylate copolymer. Polymer 51:1341–1354CrossRefGoogle Scholar
  60. 60.
    Liebscher M, Blais M-O, Pötschke P, Heinrich G (2013) A morphological study on the dispersion and selective localization behavior of graphene nanoplatelets in immiscible polymer blends of PC and SAN. Polymer 54:5875–5882CrossRefGoogle Scholar
  61. 61.
    Chen J, Shen Y, J-h Yang, Zhang N, Huang T, Wang Y et al (2013) Trapping carbon nanotubes at the interface of a polymer blend through adding graphene oxide: a facile strategy to reduce electrical resistivity. J Mater Chem C 1:7808–7811CrossRefGoogle Scholar
  62. 62.
    Ginzburg VV (2005) Influence of nanoparticles on miscibility of polymer blends. Simple Theor Macromol 38:2362–2367CrossRefGoogle Scholar
  63. 63.
    Göldel A, Marmur A, Kasaliwal GR, Pötschke P, Heinrich G (2011) Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing. Macromolecules 44:6094–6102ADSCrossRefGoogle Scholar
  64. 64.
    Krasovitski B, Marmur A (2005) Particle adhesion to drops. J Adhesion 81:869–880CrossRefGoogle Scholar
  65. 65.
    Taylor G (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond Ser A 146:501–523ADSCrossRefGoogle Scholar
  66. 66.
    Müller-Fischer N, Tobler P, Dressler M, Fischer P, Windhab EJ (2008) Single bubble deformation and breakup in simple shear flow. Exp Fluids 45:917–926CrossRefGoogle Scholar
  67. 67.
    Maffettone PL, Minale M (1998) Equation of change for ellipsoidal drops in viscous flow. J Nonnewton Fluid Mech 78:227–241zbMATHCrossRefGoogle Scholar
  68. 68.
    Wolf B, Frith WJ, Norton IT (2001) Influence of gelation on particle shape in sheared biopolymer blends. J Rheol 45:1141–1157ADSCrossRefGoogle Scholar
  69. 69.
    Guido S, Villone M (1998) Three-dimensional shape of a drop under simple shear flow. J Rheol 42:395–415ADSCrossRefGoogle Scholar
  70. 70.
    Guido S, Villone M (1999) Measurement of interfacial tension by drop retraction analysis. J Colloid Interf Sci 209:247–250ADSCrossRefGoogle Scholar
  71. 71.
    Gooneie A, Nazockdast H, Shahsavan F (2015) Effect of selective localization of carbon nanotubes in PA6 dispersed phase of PP/PA6 blends on the morphology evolution with time, part 1: Droplet deformation under simple shear flows. Polym Eng Sci 55:1504–1519CrossRefGoogle Scholar
  72. 72.
    López-Barrón CR, Macosko CW (2014) Rheology of compatibilized immiscible blends with droplet-matrix and cocontinuous morphologies during coarsening. J Rheol 58:1935–1953ADSCrossRefGoogle Scholar
  73. 73.
    Huitric J, Ville J, Médéric P, Moan M, Aubry T (2009) Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: Effect of clay weight fraction. J Rheol 53:1101–1119ADSCrossRefGoogle Scholar
  74. 74.
    Li R, Yu W, Zhou C (2006) Rheological characterization of droplet-matrix versus co-continuous morphology. J Macromol Sci Part B 45:889–898ADSCrossRefGoogle Scholar
  75. 75.
    Ezati P, Ghasemi E, Karabi M, Azizi H (2008) Rheological behaviour of PP/EPDM blend: the effect of compatibilizationGoogle Scholar
  76. 76.
    Sangroniz L, Moncerrate MA, De Amicis VA, Palacios JK, Fernández M, Santamaria A et al (2015) The outstanding ability of nanosilica to stabilize dispersions of Nylon 6 droplets in a polypropylene matrix. J Polym Sci Part B Polym Phys 53:1567–1579ADSCrossRefGoogle Scholar
  77. 77.
    Sangroniz L, Palacios JK, Fernández M, Eguiazabal JI, Santamaria A, Müller AJ (2016) Linear and non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosilica and its relationship with the morphology. Eur Polym J 83:10–21CrossRefGoogle Scholar
  78. 78.
    Roman C, García-Morales M, Gupta J, McNally T (2017) On the phase affinity of multi-walled carbon nanotubes in PMMA: LDPE immiscible polymer blends. Polymer 118:1–11CrossRefGoogle Scholar
  79. 79.
    Choi SJ, Schowalter W (1975) Rheological properties of nondilute suspensions of deformable particles. Phys Fluids 18:420–427ADSzbMATHCrossRefGoogle Scholar
  80. 80.
    Gramespacher H, Meissner J (1992) Interfacial tension between polymer melts measured by shear oscillations of their blends. J Rheol 36:1127–1141ADSCrossRefGoogle Scholar
  81. 81.
    Palierne J (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214CrossRefGoogle Scholar
  82. 82.
    Wu D, Zhang Y, Zhang M, Zhou W (2008) Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur Polym J 44:2171–2183CrossRefGoogle Scholar
  83. 83.
    Labaume I, Médéric P, Huitric J, Aubry T (2013) Comparative study of interphase viscoelastic properties in polyethylene/polyamide blends compatibilized with clay nanoparticles or with a graft copolymer. J Rheol 57:377–392ADSCrossRefGoogle Scholar
  84. 84.
    Elias L, Fenouillot F, Majesté J-C, Alcouffe P, Cassagnau P (2008) Immiscible polymer blends stabilized with nano-silica particles: Rheology and effective interfacial tension. Polymer 49:4378–4385CrossRefGoogle Scholar
  85. 85.
    Maani A, Heuzey M-C, Carreau PJ (2011) Coalescence in thermoplastic olefin (TPO) blends under shear flow. Rheol Acta 50:881–895CrossRefGoogle Scholar
  86. 86.
    Graebling D, Muller R, Palierne J (1993) Linear viscoelasticity of incompatible polymer blends in the melt in relation with interfacial properties. Le Journal de Physique IV. 3: C7-1525–C7-34Google Scholar
  87. 87.
    Macaúbas PHP, Demarquette NR (2001) Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers. Polymer 42:2543–2554CrossRefGoogle Scholar
  88. 88.
    Souza AMC, Demarquette NR (2002) Influence of coalescence and interfacial tension on the morphology of PP/HDPE compatibilized blends. Polymer 43:3959–3967CrossRefGoogle Scholar
  89. 89.
    Demarquette NR, De Souza AMC, Palmer G, Macaubas PHP (2003) Comparison between five experimental methods to evaluate interfacial tension between molten polymers. Polym Eng Sci 43:670–683CrossRefGoogle Scholar
  90. 90.
    Sung YT, Han MS, Hyun JC, Kim WN, Lee HS (2003) Rheological properties and interfacial tension of polypropylene–poly(styrene-co-acrylonitrile) blend containing compatibilizer. Polymer 44:1681–1687CrossRefGoogle Scholar
  91. 91.
    López-Barrón CR, Macosko CW (2012) Rheological and morphological study of cocontinuous polymer blends during coarsening. J Rheol 56:1315–1334ADSCrossRefGoogle Scholar
  92. 92.
    Z-y Gui, H-r Wang (2012) Gao Y, Lu C, Cheng S-j. Morphology and melt rheology of biodegradable poly (lactic acid)/poly (butylene succinate adipate) blends: effect of blend compositions. Iran Polym J 21:81–89CrossRefGoogle Scholar
  93. 93.
    Isayev AI (2016) Encyclopedia of polymer blends, volume 3 structure. WileyGoogle Scholar
  94. 94.
    Bai J, Goodridge RD, Hague RJM, Okamoto M (2017) Processing and characterization of a polylactic acid/nanoclay composite for laser sintering. Polym Compos 38:2570–2576CrossRefGoogle Scholar
  95. 95.
    Bell JR, Chang K, López-Barrón CR, Macosko CW, Morse DC (2010) Annealing of cocontinuous polymer blends: effect of block copolymer molecular weight and architecture. Macromolecules 43:5024–5032ADSCrossRefGoogle Scholar
  96. 96.
    Trifkovic M, Hedegaard A, Huston K, Sheikhzadeh M, Macosko CW (2012) Porous films via PE/PEO cocontinuous blends. Macromolecules 45:6036–6044ADSCrossRefGoogle Scholar
  97. 97.
    Sengers WGF, Sengupta P, Noordermeer JWM, Picken SJ, Gotsis AD (2004) Linear viscoelastic properties of olefinic thermoplastic elastomer blends: melt state properties. Polymer 45:8881–8891CrossRefGoogle Scholar
  98. 98.
    Yu W, Zhou W, Zhou C (2010) Linear viscoelasticity of polymer blends with co-continuous morphology. Polymer 51:2091–2098CrossRefGoogle Scholar
  99. 99.
    Veenstra H, Verkooijen PCJ, van Lent BJJ, van Dam J, de Boer AP, Nijhof APHJ (2000) On the mechanical properties of co-continuous polymer blends: experimental and modelling. Polymer 41:1817–1826CrossRefGoogle Scholar
  100. 100.
    Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH et al (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753CrossRefGoogle Scholar
  101. 101.
    Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newtonian Fluid Mech 107:51–65zbMATHCrossRefGoogle Scholar
  102. 102.
    Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52:1427–1458ADSCrossRefGoogle Scholar
  103. 103.
    Ewoldt RH (2013) Defining nonlinear rheological material functions for oscillatory shear. J Rheol 57:177–195ADSCrossRefGoogle Scholar
  104. 104.
    Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6:57–63CrossRefGoogle Scholar
  105. 105.
    Payne AR (1962) The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II. J Appl Polym Sci 6:368–372CrossRefGoogle Scholar
  106. 106.
    Salehiyan R, Hyun K (2013) Effect of organoclay on non-linear rheological properties of poly (lactic acid)/poly (caprolactone) blends. Korean J Chem Eng 30:1013–1022CrossRefGoogle Scholar
  107. 107.
    Salehiyan R, Ray S, Bandyopadhyay J, Ojijo V (2017) The distribution of nanoclay particles at the interface and their influence on the microstructure development and rheological properties of reactively processed biodegradable polylactide/poly(butylene succinate) blend nanocomposites. Polymers 9:350CrossRefGoogle Scholar
  108. 108.
    Wilhelm M (2002) Fourier-transform rheology. Macromol Mater and Eng 287:83–105CrossRefGoogle Scholar
  109. 109.
    Wilhelm M, Maring D, Spiess H-W (1998) Fourier-transform rheology. Rheol Acta 37:399–405CrossRefGoogle Scholar
  110. 110.
    Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38:349–356CrossRefGoogle Scholar
  111. 111.
    Carotenuto C, Grosso M, Maffettone PL (2008) Fourier transform rheology of dilute immiscible polymer blends: a novel procedure to probe blend morphology. Macromolecules 41:4492–4500ADSCrossRefGoogle Scholar
  112. 112.
    Reinheimer K, Grosso M, Wilhelm M (2011) Fourier Transform Rheology as a universal non-linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions. J Colloid Interf Sci 360:818–825ADSCrossRefGoogle Scholar
  113. 113.
    Lim HT, Ahn KH, Hong JS, Hyun K (2013) Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow. J Rheol 57:767–789ADSCrossRefGoogle Scholar
  114. 114.
    Hyun K, Wilhelm M (2008) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems. Macromolecules 42:411–422ADSCrossRefGoogle Scholar
  115. 115.
    Ock HG, Ahn KH, Lee SJ, Hyun K (2016) Characterization of compatibilizing effect of organoclay in poly(lactic acid) and natural rubber blends by FT-rheology. Macromolecules 49:2832–2842ADSCrossRefGoogle Scholar
  116. 116.
    Pang H, Xu L, Yan D-X, Li Z-M (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908–1933CrossRefGoogle Scholar
  117. 117.
    Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270:134–139CrossRefGoogle Scholar
  118. 118.
    Zhang S, Deng H, Zhang Q, Fu Q (2014) Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl Mater Interf 6:6835–6844CrossRefGoogle Scholar
  119. 119.
    Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly(styrene-acrylonitrile). Macromol Rapid Commun 30:423–429CrossRefGoogle Scholar
  120. 120.
    Chen J, Cui X, Zhu Y, Jiang W, Sui K (2017) Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions. Carbon 114:441–448CrossRefGoogle Scholar
  121. 121.
    Chen J, H-y Lu, J-h Yang, Wang Y, X-t Zheng, C-l Zhang et al (2014) Effect of organoclay on morphology and electrical conductivity of PC/PVDF/CNT blend composites. Compos Sci Technol 94:30–38CrossRefGoogle Scholar
  122. 122.
    Chen J, Y-y Shi, J-h Yang, Zhang N, Huang T, Chen C et al (2012) A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. J Mater Chem 22:22398–22404CrossRefGoogle Scholar
  123. 123.
    Bai L, He S, Fruehwirth JW, Stein A, Macosko CW, Cheng X (2017) Localizing graphene at the interface of cocontinuous polymer blends: morphology, rheology, and conductivity of cocontinuous conductive polymer composites. J Rheol 61:575–587ADSCrossRefGoogle Scholar
  124. 124.
    Mao C, Zhu Y, Jiang W (2012) Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends. ACS Appl Mater Interfaces 4:5281–5286CrossRefGoogle Scholar
  125. 125.
    Pötschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42:965–969CrossRefGoogle Scholar
  126. 126.
    Hosseini SH, Entezami AA (2003) Conducting polymer blends of polypyrrole with polyvinyl acetate, polystyrene, and polyvinyl chloride based toxic gas sensors. J Appl Polym Sci 90:49–62CrossRefGoogle Scholar
  127. 127.
    Segal E, Tchoudakov R, Mironi-Harpaz I, Narkis M, Siegmann A (2005) Chemical sensing materials based on electrically-conductive immiscible polymer blends. Polym Int 54:1065–1075CrossRefGoogle Scholar
  128. 128.
    Panwar V, Kang B-S, Park J-O, Park S-H (2011) New ionic polymer–metal composite actuators based on PVDF/PSSA/PVP polymer blend membrane. Polym Eng Sci 51:1730–1741CrossRefGoogle Scholar
  129. 129.
    Ma L-F, Bao R-Y, Dou R, Zheng S-D, Liu Z-Y, Zhang R-Y et al (2016) Conductive thermoplastic vulcanizates (TPVs) based on polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) blend: From strain sensor to highly stretchable conductor. Compos Sci Technol 128:176–184CrossRefGoogle Scholar
  130. 130.
    Ji M, Deng H, Yan D, Li X, Duan L, Fu Q (2014) Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: an effective method for tunable resistivity–strain sensing behavior. Compos Sci Technol 92:16–26CrossRefGoogle Scholar
  131. 131.
    Mural PKS, Pawar SP, Jayanthi S, Madras G, Sood AK, Bose S (2015) Engineering nanostructures by decorating magnetic nanoparticles onto graphene oxide sheets to shield electromagnetic radiations. ACS Appl Mater Interf 7:16266–16278CrossRefGoogle Scholar
  132. 132.
    Soares BG, Gubbels F, Jérôme R, Teyssié P, Vanlathem E, Deltour R (1995) Electrical conductivity in carbon black-loaded polystyrene-polyisoprene blends. Selective localization of carbon black at the interface. Polym Bull 35:223–228CrossRefGoogle Scholar
  133. 133.
    Brochu P, Pei Q (2010) Advances in Dielectric Elastomers for Actuators and Artificial Muscles. Macromol Rapid Commun 31:10–36CrossRefGoogle Scholar
  134. 134.
    Lakshmi N, Tambe P (2017) EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Compos Interf 24:861–882CrossRefGoogle Scholar
  135. 135.
    Kang SJ, Park YJ, Bae I, Kim KJ, Kim H-C, Bauer S et al (2009) Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Advanc Funct Mater 19:2812–2818CrossRefGoogle Scholar
  136. 136.
    Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of Poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42:2587–2593ADSCrossRefGoogle Scholar
  137. 137.
    Dang Z-M, Yuan J-K, Yao S-H, Liao R-J (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Advanc Mater 25:6334–6365CrossRefGoogle Scholar
  138. 138.
    Yin H-M, Qian J, Zhang J, Lin Z-F, Li J-S, Xu J-Z et al (2016) Engineering Porous Poly(lactic acid) scaffolds with high mechanical performance via a solid state extrusion/porogen leaching approach. Polymers 8:213CrossRefGoogle Scholar
  139. 139.
    Washburn NR, Simon CG, Tona A, Elgendy HM, Karim A, Amis EJ (2002) Co-extrusion of biocompatible polymers for scaffolds with co-continuous morphology. J Biomed Mater Res 60:20–29CrossRefGoogle Scholar
  140. 140.
    Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486CrossRefGoogle Scholar
  141. 141.
    Oh SH, Kang SG, Kim ES, Cho SH, Lee JH (2003) Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24:4011–4021CrossRefGoogle Scholar
  142. 142.
    Neves SC, Moreira Teixeira LS, Moroni L, Reis RL, Van Blitterswijk CA, Alves NM et al (2011) Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32:1068–1079CrossRefGoogle Scholar
  143. 143.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539CrossRefGoogle Scholar
  144. 144.
    Liu Y, Ma L, Gao C (2012) Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. Mater Sci Eng, C 32:2361–2366CrossRefGoogle Scholar
  145. 145.
    Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999) In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res 47:324–335CrossRefGoogle Scholar
  146. 146.
    He W, Yong T, Teo WE, Ma Z, Ramakrishna S (2005) Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng 11:1574–1588CrossRefGoogle Scholar
  147. 147.
    Malheiro VN, Caridade SG, Alves NM, Mano JF (2010) New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater 6:418–428CrossRefGoogle Scholar
  148. 148.
    Sun D, Liu M-Q, Guo J-H, Zhang J-Y, Li B-B, Li D-Y (2015) Preparation and characterization of PDMS-PVDF hydrophobic microporous membrane for membrane distillation. Desalination 370:63–71CrossRefGoogle Scholar
  149. 149.
    Lee E-J, Deka BJ, Guo J, Woo YC, Shon HK, An AK (2017) Engineering the Re-entrant hierarchy and surface energy of PDMS-PVDF membrane for membrane distillation using a facile and benign microsphere coating. Environ Sci Technol 51:10117–10126ADSCrossRefGoogle Scholar
  150. 150.
    Mural PKS, Banerjee A, Rana MS, Shukla A, Padmanabhan B, Bhadra S et al (2014) Polyolefin based antibacterial membranes derived from PE/PEO blends compatibilized with amine terminated graphene oxide and maleated PE. J Mater Chem A 2:17635–17648CrossRefGoogle Scholar
  151. 151.
    Mural PKS, Sharma M, Shukla A, Bhadra S, Padmanabhan B, Madras G et al (2015) Porous membranes designed from bi-phasic polymeric blends containing silver decorated reduced graphene oxide synthesized via a facile one-pot approach. RSC Advanc 5:32441–32451CrossRefGoogle Scholar
  152. 152.
    Li H, Zhang H, Liang Z-Y, Chen Y-M, Zhu B-K, Zhu L-P (2014) Preparation and properties of Poly (vinylidene fluoride)/poly(dimethylsiloxane) graft (poly(propylene oxide)-block-poly(ethylene oxide)) blend porous separators and corresponding electrolytes. Electrochim Acta 116:413–420CrossRefGoogle Scholar
  153. 153.
    Li H, Chen Y-M, Ma X-T, Shi J-L, Zhu B-K, Zhu L-P (2011) Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: preparation and property of PVDF/poly(dimethylsiloxane) blending membrane. J Membr Sci 379:397–402CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.DST-CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
  2. 2.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations