Processing Thermoset-Based Nanocomposites

  • Vincent OjijoEmail author
  • Suprakas Sinha RayEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 278)


High-performance thermoset nanocomposites are advanced materials with applications in various industries, including aerospace, electronics, and automotive. Recent research and development have been focused on both two-phase systems consisting of a thermoset matrix and nanoscale filler and multiscale composites consisting of a matrix, nanoscale filler, and microscale continuous fiber fabric. This chapter discusses the various techniques used for fabrication of both the two-phase and multiscale composites, with an emphasis on epoxy-based systems. We also focus on only three nanoparticles: clays, carbon nanotubes (CNTs), and carbon nanofiber.


Thermoset Nanocomposites Processing Multiscale composites 



The authors would like to thank the South African Department of Science and Technology (DST) and the Council for Scientific and Industrial Research (CSIR) for financial support.


  1. 1.
    Ratna D (2009) Handbook of thermoset resins. Smithers ShawburyGoogle Scholar
  2. 2.
    Dodiuk H, Goodman SH (2013) Handbook of thermoset plastics. William AndrewGoogle Scholar
  3. 3.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University PressGoogle Scholar
  4. 4.
    Qi B, Zhang Q, Bannister M, Mai Y-W (2006) Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives. Compos Struct 75:514–519CrossRefGoogle Scholar
  5. 5.
    Becker O, Varley R, Simon G (2002) Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43:4365–4373CrossRefGoogle Scholar
  6. 6.
    Kornmann X, Lindberg H, Berglund LA (2001) Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer 42:1303–1310CrossRefGoogle Scholar
  7. 7.
    Wang K, Chen L, Wu J, Toh ML, He C, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800ADSCrossRefGoogle Scholar
  8. 8.
    Azeez AA, Rhee KY, Park SJ, Hui D (2013) Epoxy clay nanocomposites–processing, properties and applications: a review. Compos B Eng 45:308–320CrossRefGoogle Scholar
  9. 9.
    Messersmith PB, Giannelis EP (1994) Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem Mater 6:1719–1725CrossRefGoogle Scholar
  10. 10.
    Ratna D, Becker O, Krishnamurthy R, Simon G, Varley RJ (2003) Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate. Polymer 44:7449–7457CrossRefGoogle Scholar
  11. 11.
    Haddadi SA, Kardar P, Abbasi F, Mahdavian M (2017) Effects of nano-silica and boron carbide on the curing kinetics of resole resin. J Therm Anal Calorim 128:1217–1226CrossRefGoogle Scholar
  12. 12.
    Baller J, Becker N, Ziehmer M, Thomassey M, Zielinski B, Müller U et al (2009) Interactions between silica nanoparticles and an epoxy resin before and during network formation. Polymer 50:3211–3219CrossRefGoogle Scholar
  13. 13.
    Rashti A, Yahyaei H, Firoozi S, Ramezani S, Rahiminejad A, Karimi R et al (2016) Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process. Mater Sci Eng C 69:1248–1255CrossRefGoogle Scholar
  14. 14.
    Luo P, Xu M, Wang S, Xu Y (2017) Structural, dynamic mechanical and dielectric properties of mesoporous silica/epoxy resin nanocomposites. IEEE Trans Dielectr Electr Insul 24:1685–1697CrossRefGoogle Scholar
  15. 15.
    Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M, Kariminejad B (2017) Nanohybrids of novolac phenolic resin and carbon nanotube-containing silica network: Two different approaches for improving thermal properties of resin. J Therm Anal Calorim Int Forum Therm Stud 128:1027–1037CrossRefGoogle Scholar
  16. 16.
    Abdalla M, Dean D, Robinson P, Nyairo E (2008) Cure behavior of epoxy/MWCNT nanocomposites: the effect of nanotube surface modification. Polymer 49:3310–3317CrossRefGoogle Scholar
  17. 17.
    Thostenson ET, Chou T-W (2006) Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44:3022–3029CrossRefGoogle Scholar
  18. 18.
    Battisti A, Skordos AA, Partridge IK (2010) Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos Sci Technol 70:633–637CrossRefGoogle Scholar
  19. 19.
    Gryshchuk O, Karger-Kocsis J, Thomann R, Konya Z, Kiricsi I (2006) Multiwall carbon nanotube modified vinylester and vinylester–based hybrid resins. Compos A Appl Sci Manuf 37:1252–1259CrossRefGoogle Scholar
  20. 20.
    Li X, Gao H, Scrivens WA, Fei D, Xu X, Sutton MA et al (2004) Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 15:1416ADSCrossRefGoogle Scholar
  21. 21.
    Kim J-W, Sauti G, Siochi EJ, Smith JG, Wincheski RA, Cano RJ et al (2014) Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure. ACS Appl Mater Interfaces 6:18832–18843CrossRefGoogle Scholar
  22. 22.
    Naebe M, Wang J, Amini A, Khayyam H, Hameed N, Li LH et al (2014) Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep 4:4375ADSCrossRefGoogle Scholar
  23. 23.
    Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B et al (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRefGoogle Scholar
  24. 24.
    Teng C-C, Ma C-CM, Lu C-H, Yang S-Y, Lee S-H, Hsiao M-C et al (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116CrossRefGoogle Scholar
  25. 25.
    Monti M, Rallini M, Puglia D, Peponi L, Torre L, Kenny J (2013) Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Compos A Appl Sci Manuf 46:166–172CrossRefGoogle Scholar
  26. 26.
    Heid T, Fréchette M, David E (2015) Nanostructured epoxy/POSS composites: enhanced materials for high voltage insulation applications. IEEE Trans Dielectr Electr Insul 22:1594–1604CrossRefGoogle Scholar
  27. 27.
    Huang X, Li Y, Liu F, Jiang P, Iizuka T, Tatsumi K et al (2014) Electrical properties of epoxy/POSS composites with homogeneous nanostructure. IEEE Trans Dielectr Electr Insul 21:1516–1528CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Gu A, Liang G, Ren P, Xie J, Wang X (2007) Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites. Polym Degrad Stab 92:1986–1993CrossRefGoogle Scholar
  29. 29.
    Longhi M, Zini LP, Kunst SR, Zattera AJ (2017) Influence of the type of epoxy resin and concentration of glycidylisobutyl-poss in the properties of nanocomposites. Polym Polym Compos 25:593CrossRefGoogle Scholar
  30. 30.
    Xu Y, Chen J, Huang J, Cao J, Gérard J-F, Dai L (2017) Nanostructure of reactive polyhedral oligomeric silsesquioxane-based block copolymer as modifier in an epoxy network. High Perform Polym 29:1148–1157CrossRefGoogle Scholar
  31. 31.
    Mishra K, Pandey G, Singh RP (2017) Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement. Polym Testing 62:210–218CrossRefGoogle Scholar
  32. 32.
    Covestro AG, Leverkusen (2018) Reaction injection molding. Acceseed 18 Apr 2018
  33. 33.
    Potter K (2012) Resin transfer moulding. Springer Science & Business MediaGoogle Scholar
  34. 34.
    Rudd CD, Long AC, Kendall K, Mangin C (1997) Liquid moulding technologies: resin transfer moulding, structural reaction injection moulding and related processing techniques. ElsevierGoogle Scholar
  35. 35.
    Rachmadini Y, Tan VBC, Tay TE (2010) Enhancement of mechanical properties of composites through Incorporation of CNT in VARTM—a review. J Reinf Plast Compos 29:2782–2807CrossRefGoogle Scholar
  36. 36.
    Nguyen QT, Ngo T, Tran P, Mendis P, Zobec M, Aye L (2016) Fire performance of prefabricated modular units using organoclay/glass fibre reinforced polymer composite. Constr Build Mater 129:204–215CrossRefGoogle Scholar
  37. 37.
    Nguyen QT, Ngo TD, Tran P, Mendis P, Bhattacharyya D (2015) Influences of clay and manufacturing on fire resistance of organoclay/thermoset nanocomposites. Compos A Appl Sci Manuf 74:26–37CrossRefGoogle Scholar
  38. 38.
    Chandrasekaran VCS, Advani SG, Santare MH (2010) Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites. Carbon 48:3692–3699CrossRefGoogle Scholar
  39. 39.
    Tehrani M, Boroujeni AY, Hartman TB, Haugh TP, Case SW, Al-Haik MS (2013) Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube–epoxy composite. Compos Sci Technol 75:42–48CrossRefGoogle Scholar
  40. 40.
    González-Julián J, Iglesias Y, Caballero AC, Belmonte M, Garzón L, Ocal C et al (2011) Multi-scale electrical response of silicon nitride/multi-walled carbon nanotubes composites. Compos Sci Technol 71:60–66CrossRefGoogle Scholar
  41. 41.
    He D, Salem D, Cinquin J, Piau G-P, Bai J (2017) Impact of the spatial distribution of high content of carbon nanotubes on the electrical conductivity of glass fiber fabrics/epoxy composites fabricated by RTM technique. Compos Sci Technol 147:107–115CrossRefGoogle Scholar
  42. 42.
    Wang B-C, Zhou X, Ma K-M (2013) Fabrication and properties of CNTs/carbon fabric hybrid multiscale composites processed via resin transfer molding technique. Compos B Eng 46:123–129CrossRefGoogle Scholar
  43. 43.
    Chandrasekaran VCS, Advani SG, Santare MH (2011) Influence of resin properties on interlaminar shear strength of glass/epoxy/MWNT hybrid composites. Compos A Appl Sci Manuf 42:1007–1016CrossRefGoogle Scholar
  44. 44.
    Bekyarova E, Thostenson E, Yu A, Kim H, Gao J, Tang J et al (2007) Multiscale carbon nanotube—carbon fiber reinforcement for advanced epoxy composites. Langmuir 23:3970–3974CrossRefGoogle Scholar
  45. 45.
    Green KJ, Dean DR, Vaidya UK, Nyairo E (2009) Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Compos A Appl Sci Manuf 40:1470–1475CrossRefGoogle Scholar
  46. 46.
    Chen Q, Wu W, Zhao Y, Xi M, Xu T, Fong H (2014) Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites. Compos B Eng 58:43–53CrossRefGoogle Scholar
  47. 47.
    Rodriguez AJ, Guzman ME, Lim C-S, Minaie B (2011) Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics. Carbon 49:937–948CrossRefGoogle Scholar
  48. 48.
    Kamar NT, Hossain MM, Khomenko A, Haq M, Drzal LT, Loos A (2015) Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos A Appl Sci Manuf 70:82–92CrossRefGoogle Scholar
  49. 49.
    Qin W, Vautard F, Drzal LT, Yu J (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos B Eng 69:335–341CrossRefGoogle Scholar
  50. 50.
    Lin L-Y, Lee J-H, Hong C-E, Yoo G-H, Advani SG (2006) Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM). Compos Sci Technol 66:2116–2125CrossRefGoogle Scholar
  51. 51.
    Sharma B, Mahajan S, Chhibber R, Mehta R (2012) Glass fiber reinforced polymer-clay nanocomposites: processing, structure and hygrothermal effects on mechanical properties. Proc Chem 4:39–46CrossRefGoogle Scholar
  52. 52.
    Dean D, Obore AM, Richmond S, Nyairo E (2006) Multiscale fiber-reinforced nanocomposites: synthesis, processing and properties. Compos Sci Technol 66:2135–2142CrossRefGoogle Scholar
  53. 53.
    Aitomäki Y, Moreno-Rodriguez S, Lundström TS, Oksman K (2016) Vacuum infusion of cellulose nanofibre network composites: Influence of porosity on permeability and impregnation. Mater Des 95:204–211CrossRefGoogle Scholar
  54. 54.
    Barari B, Ellingham TK, Ghamhia II, Pillai KM, El-Hajjar R, Turng L-S et al (2016) Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Compos B Eng 84:277–284CrossRefGoogle Scholar
  55. 55.
    Rajanish M, Nanjundaradhya NV, Sharma RS (2015) An investigation on ILSS properties of unidirectional glass fibre/alumina nanoparticles filled epoxy nanocomposite at different angles of fibre orientations. Proc Mater Sci 10:555–562CrossRefGoogle Scholar
  56. 56.
    Lundström TS, Gebart BR (1994) Influence from process parameters on void formation in resin transfer molding. Polym Compos 15:25–33CrossRefGoogle Scholar
  57. 57.
    Hmeidat NS, Kemp JW, Compton BG (2018) High-strength epoxy nanocomposites for 3D printing. Compos Sci Technol 160:9–20CrossRefGoogle Scholar
  58. 58.
    Zabihi O, Ahmadi M, Nikafshar S, Chandrakumar Preyeswary K, Naebe M (2018) A technical review on epoxy-clay nanocomposites: structure, properties, and their applications in fiber reinforced composites. Compos B Eng 135:1–24CrossRefGoogle Scholar
  59. 59.
    Azeez AA, Rhee KY, Park SJ, Hui D (2013) Epoxy clay nanocomposites—processing, properties and applications: a review. Compos B Eng 45:308–320CrossRefGoogle Scholar
  60. 60.
    Lan T, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6:2216–2219CrossRefGoogle Scholar
  61. 61.
    Wang D-C, Chang G-W, Chen Y (2008) Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites. Polym Degrad Stab 93:125–133CrossRefGoogle Scholar
  62. 62.
    Koo J, Stretz H, Bray A, Wootan W, Mulich S, Powell B et al (2002) Phenolic-clay nanocomposites for rocket propulsion system. Int SAMPE Symp Exhib SAMPE 1999:1085–1099Google Scholar
  63. 63.
    Wu Z, Zhou C, Qi R (2002) The preparation of phenolic resin/montmorillonite nanocomposites by suspension condensation polymerization and their morphology. Polym Compos 23:634–646CrossRefGoogle Scholar
  64. 64.
    Jiang W, Chen SH, Chen Y (2006) Nanocomposites from phenolic resin and various organo-modified montmorillonites: preparation and thermal stability. J Appl Polym Sci 102:5336–5343CrossRefGoogle Scholar
  65. 65.
    Zhang Z, Ye G, Toghiani H, Pittman CU (2010) Morphology and thermal stability of novolac phenolic resin/clay nanocomposites prepared via solution high-shear mixing. Macromol Mater Eng 295:923–933CrossRefGoogle Scholar
  66. 66.
    Pappas J, Patel K, Nauman E (2005) Structure and properties of phenolic resin/nanoclay composites synthesized by in situ polymerization. J Appl Polym Sci 95:1169–1174CrossRefGoogle Scholar
  67. 67.
    Xiong J, Liu Y, Yang X, Wang X (2004) Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier. Polym Degrad Stab 86:549–555CrossRefGoogle Scholar
  68. 68.
    Chang JH, An YU (2002) Nanocomposites of polyurethane with various organoclays: thermomechanical properties, morphology, and gas permeability. J Polym Sci Part B Polym Phys 40:670–677ADSCrossRefGoogle Scholar
  69. 69.
    Ollier R, Rodriguez E, Alvarez V (2013) Unsaturated polyester/bentonite nanocomposites: influence of clay modification on final performance. Compos A Appl Sci Manuf 48:137–143CrossRefGoogle Scholar
  70. 70.
    Mironi-Harpaz I, Narkis M, Siegmann A (2005) Nanocomposite systems based on unsaturated polyester and organo-clay. Polym Eng Sci 45:174–186CrossRefGoogle Scholar
  71. 71.
    Kornmann X, Berglund LA, Sterte J, Giannelis E (1998) Nanocomposites based on montmorillonite and unsaturated polyester. Polym Eng Sci 38:1351–1358CrossRefGoogle Scholar
  72. 72.
    Tsai T-Y, Bunekar N, Yen C-H, Lin Y-B (2016) Synthesis and characterization of vinyl ester/inorganic layered material nanocomposites. RSC Adv 6:102797–102803CrossRefGoogle Scholar
  73. 73.
    Mohaddespour A, Ahmadi SJ, Abolghassemi H, Mahjoub SM, Atashrouz S (2018) Irradiation of poly (vinyl ester)/clay nanocomposites. J Compos Mater 52:17–25CrossRefGoogle Scholar
  74. 74.
    Ryu SH, Reddy MJK, Shanmugharaj A (2017) Role of silane concentration on the structural characteristics and properties of epoxy-/silane-modified montmorillonite clay nanocomposites. J Elastomers Plast 49:665–683CrossRefGoogle Scholar
  75. 75.
    Su L, Zeng X, He H, Tao Q, Komarneni S (2017) Preparation of functionalized kaolinite/epoxy resin nanocomposites with enhanced thermal properties. Appl Clay Sci 148:103–108CrossRefGoogle Scholar
  76. 76.
    Tolle TB, Anderson DP (2004) The role of preconditioning on morphology development in layered silicate thermoset nanocomposites. J Appl Polym Sci 91:89–100CrossRefGoogle Scholar
  77. 77.
    Hutchinson JM, Montserrat S, Román F, Cortés P, Campos L (2006) Intercalation of epoxy resin in organically modified montmorillonite. J Appl Polym Sci 102:3751–3763CrossRefGoogle Scholar
  78. 78.
    Jae-Jun P, Jae-Young L (2010) A new dispersion method for the preparation of polymer/organoclay nanocomposite in the electric fields. IEEE Trans Dielectr Electr Insul:17Google Scholar
  79. 79.
    Ngo TD, Ton-That MT, Hoa SV, Cole KC (2009) Effect of temperature, duration and speed of pre-mixing on the dispersion of clay/epoxy nanocomposites. Compos Sci Technol 69:1831–1840CrossRefGoogle Scholar
  80. 80.
    Zhao L, Li J, Guo S, Du Q (2006) Ultrasonic oscillations induced morphology and property development of polypropylene/montmorillonite nanocomposites. Polymer 47:2460–2469CrossRefGoogle Scholar
  81. 81.
    Shokrieh MM, Kefayati AR, Chitsazzadeh M (2012) Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete. Mater Des 40:443–452CrossRefGoogle Scholar
  82. 82.
    Zhou Y, Pervin F, Biswas MA, Rangari VK, Jeelani S (2006) Fabrication and characterization of montmorillonite clay-filled SC-15 epoxy. Mater Lett 60:869–873CrossRefGoogle Scholar
  83. 83.
    C-k Lam, K-t Lau, H-y Cheung, H-y Ling (2005) Effect of ultrasound sonication in nanoclay clusters of nanoclay/epoxy composites. Mater Lett 59:1369–1372CrossRefGoogle Scholar
  84. 84.
    Bharadwaj RK, Mehrabi AR, Hamilton C, Trujillo C, Murga M, Fan R et al (2002) Structure–property relationships in cross-linked polyester–clay nanocomposites. Polymer 43:3699–3705CrossRefGoogle Scholar
  85. 85.
    Yasmin A, Abot JL, Daniel IM (2003) Processing of clay/epoxy nanocomposites by shear mixing. Scripta Mater 49:81–86CrossRefGoogle Scholar
  86. 86.
    Yasmin A, Abot JL, Daniel IM (2002) Processing of clay/epoxy nanocomposites with a three-roll mill machine. MRS Online Proceedings Library Archive:740Google Scholar
  87. 87.
    Yasmin A, Luo J, Abot J, Daniel I (2006) Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos Sci Technol 66:2415–2422CrossRefGoogle Scholar
  88. 88.
    Deng S, Zhang J, Ye L (2009) Halloysite–epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Compos Sci Technol 69:2497–2505CrossRefGoogle Scholar
  89. 89.
    Lu HJ, Liang GZ, Ma XY, Zhang BY, Chen XB (2004) Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling. Polym Int 53:1545–1553CrossRefGoogle Scholar
  90. 90.
    Liu W, Hoa SV, Pugh M (2005) Organoclay-modified high performance epoxy nanocomposites. Compos Sci Technol 65:307–316CrossRefGoogle Scholar
  91. 91.
    Eesaee M, Shojaei A (2014) Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Compos A Appl Sci Manuf 63:149–158CrossRefGoogle Scholar
  92. 92.
    Withers GJ, Yu Y, Khabashesku VN, Cercone L, Hadjiev VG, Souza JM et al (2015) Improved mechanical properties of an epoxy glass–fiber composite reinforced with surface organomodified nanoclays. Compos B Eng 72:175–182CrossRefGoogle Scholar
  93. 93.
    Kalali EN, Wang X, Wang D-Y (2015) Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties. J Mater Chem A 3:6819–6826CrossRefGoogle Scholar
  94. 94.
    Park J-M, Wang Z-J, Kwon D-J, Gu G-Y, Lee W-I, Park J-K et al (2012) Optimum dispersion conditions and interfacial modification of carbon fiber and CNT–phenolic composites by atmospheric pressure plasma treatment. Compos B Eng 43:2272–2278CrossRefGoogle Scholar
  95. 95.
    Cheng QF, Wang JP, Wen JJ, Liu CH, Jiang KL, Li QQ et al (2010) Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon 48:260–266CrossRefGoogle Scholar
  96. 96.
    Ma J, Larsen RM (2014) Effect of concentration and surface modification of single walled carbon nanotubes on mechanical properties of epoxy composites. Fibers Polym 15:2169–2174CrossRefGoogle Scholar
  97. 97.
    Ganguli S, Bhuyan M, Allie L, Aglan H (2005) Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy. J Mater Sci 40:3593–3595ADSCrossRefGoogle Scholar
  98. 98.
    Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G (2007) The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48:5662–5670CrossRefGoogle Scholar
  99. 99.
    Mathur R, Chatterjee S, Singh B (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68:1608–1615CrossRefGoogle Scholar
  100. 100.
    Yeh M-K, Tai N-H, Liu J-H (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44:1–9CrossRefGoogle Scholar
  101. 101.
    McClory C, McNally T, Brennan GP, Erskine J (2007) Thermosetting polyurethane multiwalled carbon nanotube composites. J Appl Polym Sci 105:1003–1011CrossRefGoogle Scholar
  102. 102.
    Schlea MR, Meree CE, Gerhardt RA, Mintz EA, Shofner ML (2012) Network behavior of thermosetting polyimide/multiwalled carbon nanotube composites. Polymer 53:1020–1027CrossRefGoogle Scholar
  103. 103.
    Beg M, Alam AM, Yunus R, Mina M (2015) Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin. J Nanopart Res 17:53CrossRefGoogle Scholar
  104. 104.
    Ureña-Benavides EE, Kayatin MJ, Davis VA (2013) Dispersion and rheology of multiwalled carbon nanotubes in unsaturated polyester resin. Macromolecules 46:1642–1650ADSCrossRefGoogle Scholar
  105. 105.
    Natsuki T, Ni QQ, Wu SH (2008) Temperature dependence of electrical resistivity in carbon nanofiber/unsaturated polyester nanocomposites. Polym Eng Sci 48:1345–1350CrossRefGoogle Scholar
  106. 106.
    Wu Z, Meng L, Liu L, Jiang Z, Xing L, Jiang D et al (2014) Chemically grafting carbon nanotubes onto carbon fibers by poly (acryloyl chloride) for enhancing interfacial strength in carbon fiber/unsaturated polyester composites. Fibers Polym 15:659–663CrossRefGoogle Scholar
  107. 107.
    Makki MS, Abdelaal MY, Bellucci S, Abdel Salam M (2014) Multi-walled carbon nanotubes/unsaturated polyester composites: Mechanical and thermal properties study. Fullerene Nanotubes Carbon Nanostruct 22:820–833ADSCrossRefGoogle Scholar
  108. 108.
    Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater Des (1980–2015) 31:2406–2413CrossRefGoogle Scholar
  109. 109.
    Sánchez M, Campo M, Jiménez-Suárez A, Ureña A (2013) Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Compos B Eng 45:1613–1619CrossRefGoogle Scholar
  110. 110.
    Sadeghian R, Gangireddy S, Minaie B, Hsiao K-T (2006) Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Compos A Appl Sci Manuf 37:1787–1795CrossRefGoogle Scholar
  111. 111.
    An Q, Rider AN, Thostenson ET (2012) Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50:4130–4143CrossRefGoogle Scholar
  112. 112.
    Li J, Zhang G, Zhang H, Fan X, Zhou L, Shang Z et al (2018) Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes. Appl Surf Sci 428:7–16ADSCrossRefGoogle Scholar
  113. 113.
    Ghosh PK, Kumar K, Chaudhary N (2015) Influence of ultrasonic dual mixing on thermal and tensile properties of MWCNTs-epoxy composite. Compos B Eng 77:139–144CrossRefGoogle Scholar
  114. 114.
    Sun D, Chu C-C, Sue H-J (2010) Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay. Chem Mater 22:3773–3778CrossRefGoogle Scholar
  115. 115.
    Zhang X, Sue H-J, Nishimura R (2013) Acid-mediated isolation of individually dispersed SWCNTs from electrostatically tethered nanoplatelet dispersants. Carbon 56:374–382CrossRefGoogle Scholar
  116. 116.
    Liu K, Sun Y, Chen L, Feng C, Feng X, Jiang K et al (2008) Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett 8:700–705ADSCrossRefGoogle Scholar
  117. 117.
    Qian H, Greenhalgh ES, Shaffer MS, Bismarck A (2010) Carbon nanotube-based hierarchical composites: a review. J Mater Chem 20:4751–4762CrossRefGoogle Scholar
  118. 118.
    Qiu J, Zhang C, Wang B, Liang R (2007) Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology 18:275708ADSCrossRefGoogle Scholar
  119. 119.
    Morales G, Barrena M, De Salazar JG, Merino C, Rodríguez D (2010) Conductive CNF-reinforced hybrid composites by injection moulding. Compos Struct 92:1416–1422CrossRefGoogle Scholar
  120. 120.
    Gojny FH, Wichmann MH, Fiedler B, Bauhofer W, Schulte K (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos A Appl Sci Manuf 36:1525–1535CrossRefGoogle Scholar
  121. 121.
    Reia da Costa EF, Skordos AA, Partridge IK, Rezai A (2012) RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites. Compos Part A Appl Sci Manuf 43:593–602CrossRefGoogle Scholar
  122. 122.
    Thostenson E, Li W, Wang D, Ren Z, Chou T (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91:6034–6037ADSCrossRefGoogle Scholar
  123. 123.
    Sager R, Klein P, Lagoudas D, Zhang Q, Liu J, Dai L et al (2009) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Technol 69:898–904CrossRefGoogle Scholar
  124. 124.
    Qian H, Bismarck A, Greenhalgh ES, Shaffer MS (2010) Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Compos A Appl Sci Manuf 41:1107–1114CrossRefGoogle Scholar
  125. 125.
    Kepple K, Sanborn G, Lacasse P, Gruenberg K, Ready W (2008) Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 46:2026–2033CrossRefGoogle Scholar
  126. 126.
    Gong Q-J, Li H-J, Wang X, Fu Q-G (2007) Wang Z-w, Li K-Z. In situ catalytic growth of carbon nanotubes on the surface of carbon cloth. Compos Sci Technol 67:2986–2989CrossRefGoogle Scholar
  127. 127.
    Duan H, Liang J, Xia Z (2010) Synthetic hierarchical nanostructures: growth of carbon nanofibers on microfibers by chemical vapor deposition. Mater Sci Eng B 166:190–195CrossRefGoogle Scholar
  128. 128.
    Tzeng S-S, Hung K-H, Ko T-H (2006) Growth of carbon nanofibers on activated carbon fiber fabrics. Carbon 44:859–865CrossRefGoogle Scholar
  129. 129.
    Abot J, Song Y, Schulz M, Shanov V (2008) Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties. Compos Sci Technol 68:2755–2760CrossRefGoogle Scholar
  130. 130.
    Arai M, Noro Y, Sugimoto KI, Endo M (2008) Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Compos Sci Technol 68:516–525CrossRefGoogle Scholar
  131. 131.
    Garcia EJ, Wardle BL, Hart AJ (2008) Joining prepreg composite interfaces with aligned carbon nanotubes. Compos A Appl Sci Manuf 39:1065–1070CrossRefGoogle Scholar
  132. 132.
    Wicks SS, de Villoria RG, Wardle BL (2010) Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos Sci Technol 70:20–28CrossRefGoogle Scholar
  133. 133.
    Li Y, Hori N, Arai M, Hu N, Liu Y, Fukunaga H (2009) Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Compos A Appl Sci Manuf 40:2004–2012CrossRefGoogle Scholar
  134. 134.
    Zhang J, Zhuang R, Liu J, Mäder E, Heinrich G, Gao S (2010) Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon 48:2273–2281CrossRefGoogle Scholar
  135. 135.
    An Q, Rider AN, Thostenson ET (2013) Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers. ACS Appl Mater Interfaces 5:2022–2032CrossRefGoogle Scholar
  136. 136.
    Schaefer JD, Rodriguez AJ, Guzman ME, Lim C-S, Minaie B (2011) Effects of electrophoretically deposited carbon nanofibers on the interface of single carbon fibers embedded in epoxy matrix. Carbon 49:2750–2759CrossRefGoogle Scholar
  137. 137.
    Guo J, Lu C (2012) Continuous preparation of multiscale reinforcement by electrophoretic deposition of carbon nanotubes onto carbon fiber tows. Carbon 50:3101–3103CrossRefGoogle Scholar
  138. 138.
    Guo J, Lu C, An F (2012) Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite. J Mater Sci 47:2831–2836ADSCrossRefGoogle Scholar
  139. 139.
    Sui X, Shi J, Yao H, Xu Z, Chen L, Li X et al (2017) Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer. Compos A Appl Sci Manuf 92:134–144CrossRefGoogle Scholar
  140. 140.
    Rodriguez AJ, Guzman ME, Lim C-S, Minaie B (2010) Synthesis of multiscale reinforcement fabric by electrophoretic deposition of amine-functionalized carbon nanofibers onto carbon fiber layers. Carbon 48:3256–3259CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.DST-CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
  2. 2.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations