Advertisement

Processing Nanocomposites Based on Engineering Polymers: Polyamides and Polyimides

  • Vincent Ojijo
  • Suprakas Sinha Ray
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 278)

Abstract

Although polymer nanocomposites (PNCs) are now a relatively well-established technology, nanoparticles (NPs) such as carbon nanotubes (CNTs) and graphene are opening up new application areas in engineering PNCs. Therefore, research and development is increasingly being undertaken on the processing and performance of these nanocomposites in order to address keys challenges, including nanoscale dispersion in polymer matrices. This chapter discusses the processing techniques used in the fabrication of engineering PNCs. Emphasis is placed on two classes of engineering polymers: (i) polyamides (PAs) and (ii) polyimides (PIs). Similarly, we focus only on a limited number of NPs (clays, CNTs, and graphene). Apart from traditional methods, relatively new manufacturing processes, such as electrospinning and additive manufacturing, are highlighted and their applicability in the fabrication of PA- and PI-based nanocomposites is discussed.

Keywords

Engineering polymers Nanocomposites Processing 

Notes

Acknowledgements

The authors would like to thank the South African Department of Science and Technology (DST) and the Council for Scientific and Industrial Research (CSIR) for financial support.

References

  1. 1.
    Melton GH, Peters EN, Arisman RK (2011) Engineering thermoplastics. Applied plastics engineering handbook. Elsevier, Amsterdam, pp 7–21CrossRefGoogle Scholar
  2. 2.
    Margolis J (2005) Engineering plastics handbook. McGraw Hill ProfessionalGoogle Scholar
  3. 3.
    Marchildon K (2011) Polyamides—still strong after seventy years. Macromol Reaction Eng 5:22–54CrossRefGoogle Scholar
  4. 4.
    García JM, García FlC, Serna F, de la Peña JL (2010) High-performance aromatic polyamides. Prog Polymer Sci 35:623–686CrossRefGoogle Scholar
  5. 5.
    Reglero Ruiz JA, Trigo-López M, García FC, García JM (2017) Functional aromatic polyamides. Polymers 9:414CrossRefGoogle Scholar
  6. 6.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T et al (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189ADSCrossRefGoogle Scholar
  7. 7.
    Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron JM et al (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials (Basel, Switzerland) 7Google Scholar
  8. 8.
    Mittal V (2013) Modeling and prediction of polymer nanocomposite properties. Wiley, WeinheimCrossRefGoogle Scholar
  9. 9.
    Mikitaev AK, Kozlov GV (2016) The role of interface surfaces in the formation of the properties of polymer nanocomposites. J Surf Investig X-ray Synchrotron Neutron Tech 10:250–253CrossRefGoogle Scholar
  10. 10.
    Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35CrossRefGoogle Scholar
  11. 11.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  12. 12.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polymer Sci 28:1539–1641CrossRefGoogle Scholar
  13. 13.
    Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728–1734CrossRefGoogle Scholar
  14. 14.
    LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29CrossRefGoogle Scholar
  15. 15.
    Okamoto M (2006) Recent advances in polymer/layered silicate nanocomposites: an overview from science to technology. Mater Sci Technol 22:756–779CrossRefGoogle Scholar
  16. 16.
    Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198CrossRefGoogle Scholar
  17. 17.
    Liu P (2007) Polymer modified clay minerals: a review. Appl Clay Sci 38:64–76CrossRefGoogle Scholar
  18. 18.
    Chiu C-W, Huang T-K, Wang Y-C, Alamani BG, Lin J-J (2014) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39:443–485CrossRefGoogle Scholar
  19. 19.
    Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187CrossRefGoogle Scholar
  20. 20.
    Sinha Ray S, Okamoto K, Okamoto M (2003) Structure–property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36:2355–2367ADSCrossRefGoogle Scholar
  21. 21.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  22. 22.
    Schartel B, Pötschke P, Knoll U, Abdel-Goad M (2005) Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polymer J 41:1061–1070CrossRefGoogle Scholar
  23. 23.
    Lee H-J, Oh S-J, Choi J-Y, Kim JW, Han J, Tan L-S et al (2005) In situ synthesis of poly (ethylene terephthalate)(PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites. Chem Mater 17:5057–5064CrossRefGoogle Scholar
  24. 24.
    Nogales A, Broza G, Roslaniec Z, Schulte K, Šics I, Hsiao B et al (2004) Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly (butylene terephthalate). Macromolecules 37:7669–7672ADSCrossRefGoogle Scholar
  25. 25.
    Broza G, Kwiatkowska M, Rosłaniec Z, Schulte K (2005) Processing and assessment of poly (butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes. Polymer 46:5860–5867CrossRefGoogle Scholar
  26. 26.
    Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRefGoogle Scholar
  27. 27.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603ADSCrossRefGoogle Scholar
  28. 28.
    Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867CrossRefGoogle Scholar
  29. 29.
    Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Reports 49:89–112CrossRefGoogle Scholar
  30. 30.
    Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ et al (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33CrossRefGoogle Scholar
  31. 31.
    Cai H, Yan F, Xue Q (2004) Investigation of tribological properties of polyimide/carbon nanotube nanocomposites. Mater Sci Eng A 364:94–100CrossRefGoogle Scholar
  32. 32.
    Ounaies Z, Park C, Wise K, Siochi E, Harrison J (2003) Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol 63:1637–1646CrossRefGoogle Scholar
  33. 33.
    Castillo FY, Socher R, Krause B, Headrick R, Grady BP, Prada-Silvy R et al (2011) Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer 52:3835–3845CrossRefGoogle Scholar
  34. 34.
    Liu T, Tong Y, Zhang W-D (2007) Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. Compos Sci Technol 67:406–412CrossRefGoogle Scholar
  35. 35.
    Sianipar M, Kim SH, Min C, Tijing LD, Shon HK (2016) Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application. J Ind Eng Chem 34:364–373CrossRefGoogle Scholar
  36. 36.
    Inukai S, Cruz-Silva R, Ortiz-Medina J, Morelos-Gomez A, Takeuchi K, Hayashi T et al (2015) High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube polyamide nanocomposite. Sci Rep 5:13562ADSCrossRefGoogle Scholar
  37. 37.
    Kim HJ, Choi K, Baek Y, Kim D-G, Shim J, Yoon J et al (2014) High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl Mater Interfaces 6:2819–2829CrossRefGoogle Scholar
  38. 38.
    Yu S, Wong WM, Hu X, Juay YK (2009) The characteristics of carbon nanotube-reinforced poly(phenylene sulfide) nanocomposites. J Appl Polym Sci 113:3477–3483CrossRefGoogle Scholar
  39. 39.
    Jiang Z, Hornsby P, McCool R, Murphy A (2012) Mechanical and thermal properties of polyphenylene sulfide/multiwalled carbon nanotube composites. J Appl Polym Sci 123:2676–2683CrossRefGoogle Scholar
  40. 40.
    Anand K, Agarwal U, Joseph R (2007) Carbon nanotubes-reinforced PET nanocomposite by melt-compounding. J Appl Polym Sci 104:3090–3095CrossRefGoogle Scholar
  41. 41.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183ADSCrossRefGoogle Scholar
  42. 42.
    Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530ADSCrossRefGoogle Scholar
  43. 43.
    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRefGoogle Scholar
  44. 44.
    Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327ADSCrossRefGoogle Scholar
  45. 45.
    Sungjin P, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224ADSCrossRefGoogle Scholar
  46. 46.
    Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077CrossRefGoogle Scholar
  47. 47.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRefGoogle Scholar
  48. 48.
    Cai D, Song M (2010) Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem 20:7906–7915CrossRefGoogle Scholar
  49. 49.
    Tseng I, Chang JC, Huang SL, Tsai MH (2013) Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polym Int 62:827–835CrossRefGoogle Scholar
  50. 50.
    Yoonessi M, Shi Y, Scheiman DA, Lebron-Colon M, Tigelaar DM, Weiss R et al (2012) Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 6:7644–7655CrossRefGoogle Scholar
  51. 51.
    Ha HW, Choudhury A, Kamal T, Kim D-H, Park S-Y (2012) Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS Appl Mater Interfaces 4:4623–4630CrossRefGoogle Scholar
  52. 52.
    Yin J, Zhu G, Deng B (2016) Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379:93–101CrossRefGoogle Scholar
  53. 53.
    Zheng D, Tang G, Zhang H-B, Yu Z-Z, Yavari F, Koratkar N et al (2012) In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Compos Sci Technol 72:284–289CrossRefGoogle Scholar
  54. 54.
    Liu H, Hou L, Peng W, Zhang Q, Zhang X (2012) Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber. J Mater Sci 47:8052–8060ADSCrossRefGoogle Scholar
  55. 55.
    Yoonessi M, Gaier JR (2010) Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4:7211–7220CrossRefGoogle Scholar
  56. 56.
    Gedler G, Antunes M, Realinho V, Velasco J (2012) Thermal stability of polycarbonate-graphene nanocomposite foams. Polym Degrad Stab 97:1297–1304CrossRefGoogle Scholar
  57. 57.
    Bandla S, Hanan J (2012) Microstructure and elastic tensile behavior of polyethylene terephthalate-exfoliated graphene nanocomposites. J Mater Sci 47:876–882ADSCrossRefGoogle Scholar
  58. 58.
    Zhang H-B, Zheng W-G, Yan Q, Yang Y, Wang J-W, Lu Z-H et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196CrossRefGoogle Scholar
  59. 59.
    Bian J, Lin HL, He FX, Wang L, Wei XW, Chang IT et al (2013) Processing and assessment of high-performance poly(butylene terephthalate) nanocomposites reinforced with microwave exfoliated graphite oxide nanosheets. Eur Polymer J 49:1406–1423CrossRefGoogle Scholar
  60. 60.
    Fabbri P, Bassoli E, Bon SB, Valentini L (2012) Preparation and characterization of poly (butylene terephthalate)/graphene composites by in situ polymerization of cyclic butylene terephthalate. Polymer 53:897–902CrossRefGoogle Scholar
  61. 61.
    Chen H, Huang C, Yu W, Zhou C (2013) Effect of thermally reduced graphite oxide (TrGO) on the polymerization kinetics of poly(butylene terephthalate) (pCBT)/TrGO nanocomposites prepared by in situ ring-opening polymerization of cyclic butylene terephthalate. Polymer 54:1603–1611CrossRefGoogle Scholar
  62. 62.
    Ionita M, Pandele AM, Crica L, Pilan L (2014) Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Compos B Eng 59:133–139CrossRefGoogle Scholar
  63. 63.
    Rezaee R, Nasseri S, Mahvi AH, Nabizadeh R, Mousavi SA, Rashidi A et al (2015) Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water. J Environ Health Sci Eng 13:61CrossRefGoogle Scholar
  64. 64.
    Qin Y, Peng Q, Ding Y, Lin Z, Wang C, Li Y et al (2015) Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9:8933–8941CrossRefGoogle Scholar
  65. 65.
    Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972CrossRefGoogle Scholar
  66. 66.
    Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:8CrossRefGoogle Scholar
  67. 67.
    Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRefGoogle Scholar
  68. 68.
    Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron JM et al (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7:74CrossRefGoogle Scholar
  69. 69.
    Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696CrossRefGoogle Scholar
  70. 70.
    Zhang W, Camino G, Yang R (2017) Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Prog Polym Sci 67:77–125CrossRefGoogle Scholar
  71. 71.
    Sánchez-Soto M, Schiraldi DA, Illescas S (2009) Study of the morphology and properties of melt-mixed polycarbonate–POSS nanocomposites. Eur Polymer J 45:341–352CrossRefGoogle Scholar
  72. 72.
    Zhao Y, Schiraldi DA (2005) Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 46:11640–11647CrossRefGoogle Scholar
  73. 73.
    Baldi F, Bignotti F, Ricco L, Monticelli O, Riccò T (2006) Mechanical and structural characterization of POSS-modified polyamide 6. J Appl Polym Sci 100:3409–3414CrossRefGoogle Scholar
  74. 74.
    Wan C, Zhao F, Bao X, Kandasubramanian B, Duggan M (2009) Effect of POSS on crystalline transitions and physical properties of polyamide 12. J Polym Sci Part B Polym Phys 47:121–129ADSCrossRefGoogle Scholar
  75. 75.
    Yu H, Ren W, Zhang Y (2009) Nonisothermal decomposition kinetics of nylon 1010/POSS composites. J Appl Polym Sci 113:17–23CrossRefGoogle Scholar
  76. 76.
    Yoon KH, Polk MB, Park JH, Min BG, Schiraldi DA (2005) Properties of poly(ethylene terephthalate) containing epoxy-functionalized polyhedral oligomeric silsesquioxane. Polym Int 54:47–53CrossRefGoogle Scholar
  77. 77.
    Kim KJ, Ramasundaram S, Lee JS (2008) Synthesis and characterization of poly(trimethylene terephthalate)/polyhedral oligomeric silsesquixanes nanocomposites. Polym Compos 29:894–901CrossRefGoogle Scholar
  78. 78.
    Zhou Z, Yin N, Zhang Y, Zhang Y (2008) Properties of poly(butylene terephthalate) chain-extended by epoxycyclohexyl polyhedral oligomeric silsesquioxane. J Appl Polym Sci 107:825–830CrossRefGoogle Scholar
  79. 79.
    Geng Z, Huo M, Mu J, Zhang S, Lu Y, Luan J et al (2014) Ultra low dielectric constant soluble polyhedral oligomeric silsesquioxane (POSS)–poly (aryl ether ketone) nanocomposites with excellent thermal and mechanical properties. J Mater Chem C 2:1094–1103CrossRefGoogle Scholar
  80. 80.
    Lee Y-J, Huang J-M, Kuo S-W, Lu J-S, Chang F-C (2005) Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer 46:173–181CrossRefGoogle Scholar
  81. 81.
    Wahab MA, Mya KY, He C (2008) Synthesis, morphology, and properties of hydroxyl terminated-POSS/polyimide low-k nanocomposite films. J Polym Sci Part A Polym Chem 46:5887–5896ADSCrossRefGoogle Scholar
  82. 82.
    Iyer P, Coleman MR (2008) Thermal and mechanical properties of blended polyimide and amine-functionalized poly(orthosiloxane) composites. J Appl Polym Sci 108:2691–2699CrossRefGoogle Scholar
  83. 83.
    Tamaki R, Choi J, Laine RM (2003) A polyimide nanocomposite from octa(aminophenyl)silsesquioxane. Chem Mater 15:793–797CrossRefGoogle Scholar
  84. 84.
    Fan H, Yang R (2013) Flame-retardant polyimide cross-linked with polyhedral oligomeric octa(aminophenyl)silsesquioxane. Ind Eng Chem Res 52:2493–2500CrossRefGoogle Scholar
  85. 85.
    Zhu J, Lim J, Lee C-H, Joh H-I, Kim HC, Park B et al (2014) Multifunctional polyimide/graphene oxide composites via in situ polymerization. J Appl Polym Sci 131Google Scholar
  86. 86.
    Qian Y, Wu H, Yuan D, Li X, Yu W, Wang C (2015) In situ polymerization of polyimide-based nanocomposites via covalent incorporation of functionalized graphene nanosheets for enhancing mechanical, thermal, and electrical properties. J Appl Polym Sci 132CrossRefGoogle Scholar
  87. 87.
    Liu P, Yao Z, Li L, Zhou J (2016) In situ synthesis and mechanical, thermal properties of polyimide nanocomposite film by addition of functionalized graphene oxide. Polym Compos 37:907–914CrossRefGoogle Scholar
  88. 88.
    He L, Zhang P, Chen H, Sun J, Wang J, Qin C et al (2016) Preparation of polyimide/siloxane-functionalized graphene oxide composite films with high mechanical properties and thermal stability via in situ polymerization. Polym Int 65:84–92CrossRefGoogle Scholar
  89. 89.
    Wang Y, Wu X, Feng C, Zeng Q (2016) Improved dielectric properties of surface modified BaTiO3/polyimide composite films. Microelectron Eng 154:17–21CrossRefGoogle Scholar
  90. 90.
    Ojijo V, Sinha Ray S (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589CrossRefGoogle Scholar
  91. 91.
    Isayev AI, Kumar R, Lewis TM (2009) Ultrasound assisted twin screw extrusion of polymer–nanocomposites containing carbon nanotubes. Polymer 50:250–260CrossRefGoogle Scholar
  92. 92.
    Gao X, Isayev AI, Zhang X, Zhong J (2017) Influence of processing parameters during ultrasound assisted extrusion on the properties of polycarbonate/carbon nanotubes composites. Compos Sci Technol 144:125–138CrossRefGoogle Scholar
  93. 93.
    Zhong J, Isayev AI (2015) Properties of polyetherimide/graphite composites prepared using ultrasonic twin-screw extrusion. J Appl Polym Sci 132Google Scholar
  94. 94.
    Ávila-Orta C, Espinoza-González C, Martínez-Colunga G, Bueno-Baqués D, Maffezzoli A, Lionetto F (2013) An overview of progress and current challenges in ultrasonic treatment of polymer melts. Adv Polym Technol 32:E582–E602CrossRefGoogle Scholar
  95. 95.
    Gao X, Isayev AI, Yi C (2016) Ultrasonic treatment of polycarbonate/carbon nanotubes composites. Polymer 84:209–222CrossRefGoogle Scholar
  96. 96.
    Isayev AI, Jung C, Gunes K, Kumar R (2008) Ultrasound assisted single screw extrusion process for dispersion of carbon nanofibers in polymers. Int Polym Proc 23:395–405CrossRefGoogle Scholar
  97. 97.
    Karger-Kocsis J, Kmetty Á, Lendvai L, Drakopoulos S, Bárány T (2015) Water-assisted production of thermoplastic nanocomposites: a review. Materials 8:72ADSCrossRefGoogle Scholar
  98. 98.
    Touchaleaume F, Soulestin J, Sclavons M, Devaux J, Lacrampe M, Krawczak P (2011) One-step water-assisted melt-compounding of polyamide 6/pristine clay nanocomposites: an efficient way to prevent matrix degradation. Polym Degrad Stab 96:1890–1900CrossRefGoogle Scholar
  99. 99.
    Stoclet G, Sclavons M, Devaux J (2013) Relations between structure and property of polyamide 11 nanocomposites based on raw clays elaborated by water-assisted extrusion. J Appl Polym Sci 127:4809–4824CrossRefGoogle Scholar
  100. 100.
    Yu ZZ, Hu GH, Varlet J, Dasari A, Mai YW (2005) Water-assisted melt compounding of nylon-6/pristine montmorillonite nanocomposites. J Polym Sci Part B Polym Phys 43:1100–1112ADSCrossRefGoogle Scholar
  101. 101.
    Molajavadi V, Garmabi H (2011) Water assisted exfoliation of PA6/clay nanocomposites using a twin screw extruder: Effect of water contact time. J Appl Polym Sci 119:736–743CrossRefGoogle Scholar
  102. 102.
    Stoeffler K, Utracki LA, Simard Y, Labonté S (2013) Polyamide 12 (PA12)/clay nanocomposites fabricated by conventional extrusion and water-assisted extrusion processes. J Appl Polym Sci 130:1959–1974CrossRefGoogle Scholar
  103. 103.
    Lecouvet B, Sclavons M, Bourbigot S, Bailly C (2014) Towards scalable production of polyamide 12/halloysite nanocomposites via water-assisted extrusion: mechanical modeling, thermal and fire properties. Polym Adv Technol 25:137–151CrossRefGoogle Scholar
  104. 104.
    Fedullo N, Sorlier E, Sclavons M, Bailly C, Lefebvre J-M, Devaux J (2007) Polymer-based nanocomposites: overview, applications and perspectives. Prog Org Coat 58:87–95CrossRefGoogle Scholar
  105. 105.
    Dini M, Mousavand T, Carreau PJ, Kamal MR, Ton-That MT (2014) Microstructure and properties of poly (ethylene terephthalate)/organoclay nanocomposites prepared by water-assisted extrusion: effect of organoclay concentration. Polym Eng Sci 54:1879–1892CrossRefGoogle Scholar
  106. 106.
    Dini M, Mousavand T, Carreau PJ, Kamal MR, Ton-That MT (2014) Effect of water-assisted extrusion and solid-state polymerization on the microstructure of PET/Clay nanocomposites. Polym Eng Sci 54:1723–1736CrossRefGoogle Scholar
  107. 107.
    Lecouvet B, Sclavons M, Bourbigot S, Bailly C (2013) Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polym Degrad Stab 98:1993–2004CrossRefGoogle Scholar
  108. 108.
    Korbee RA, Van Geenen AA (2002) Process for the preparation of a polyamide nanocomposite composition. Google PatentsGoogle Scholar
  109. 109.
    Peng J, Walsh PJ, Sabo RC, Turng L-S, Clemons CM (2016) Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming. Polymer 84:158–166CrossRefGoogle Scholar
  110. 110.
    Hasegawa N, Okamoto H, Kato M, Usuki A, Sato N (2003) Nylon 6/Na–montmorillonite nanocomposites prepared by compounding Nylon 6 with Na–montmorillonite slurry. Polymer 44:2933–2937CrossRefGoogle Scholar
  111. 111.
    Fedullo N, Sclavons M, Bailly C, Lefebvre JM, Devaux J (2006) Nanocomposites from untreated clay: a myth? Macromolecular symposia: Wiley Online Library, pp 235–245Google Scholar
  112. 112.
    Wevers MGM, Pijpers TFJ, Mathot VBF (2007) The way to measure quantitatively full dissolution and crystallization of polyamides in water up to 200°C and above by DSC. Thermochim Acta 453:67–71CrossRefGoogle Scholar
  113. 113.
    Charlet K, Mathot V, Devaux J (2011) Crystallization and dissolution behaviour of polyamide 6-water systems under pressure. Polym Int 60:119–125CrossRefGoogle Scholar
  114. 114.
    Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 78:1149–1151ADSCrossRefGoogle Scholar
  115. 115.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170CrossRefGoogle Scholar
  116. 116.
    Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75CrossRefGoogle Scholar
  117. 117.
    Liao Y, Loh C-H, Tian M, Wang R, Fane AG (2018) Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Prog Polym Sci 77:69–94CrossRefGoogle Scholar
  118. 118.
    Wang G, Yu D, Kelkar AD, Zhang L (2017) Electrospun nanofiber: emerging reinforcing filler in polymer matrix composite materials. Prog Polym Sci 75:73–107CrossRefGoogle Scholar
  119. 119.
    Anton F (1944) Method and apparatus for spinning. Anton, Formhals, United StatesGoogle Scholar
  120. 120.
    Formhals A (1934) Process and apparatus for preparaing artificial threads. Anton Formhals, United StatesGoogle Scholar
  121. 121.
    Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160CrossRefGoogle Scholar
  122. 122.
    Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223ADSCrossRefGoogle Scholar
  123. 123.
    Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531–4547Google Scholar
  124. 124.
    Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J ChemGoogle Scholar
  125. 125.
    Brown TD, Dalton PD, Hutmacher DW (2016) Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci 56:116–166CrossRefGoogle Scholar
  126. 126.
    Taylor G (1964) Disintegration of water drops in an electric field. Proc R Soc Lond A 280:383–397ADSzbMATHCrossRefGoogle Scholar
  127. 127.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–47CrossRefGoogle Scholar
  128. 128.
    Ding Y, Hou H, Zhao Y, Zhu Z, Fong H (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103CrossRefGoogle Scholar
  129. 129.
    Bergshoef MM, Vancso GJ (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv Mater 11:1362CrossRefGoogle Scholar
  130. 130.
    Chang Z (2011) “Firecracker-shaped” ZnO/polyimide hybrid nanofibers via electrospinning and hydrothermal process. Chem Commun 2011:4427–4429CrossRefGoogle Scholar
  131. 131.
    Schiffman JD, Elimelech M (2011) Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes. ACS Appl Mater Interfaces 3:462–468CrossRefGoogle Scholar
  132. 132.
    Huang ZB, Li G, Sui G, Yang XP (2009) Synergy effects of electrospun polysulfone/CNTs hybrid nanofibers toughened and reinforced epoxy. Trans Tech Publ, Adv Mater Res, pp 517–520Google Scholar
  133. 133.
    Xu W, Ding Y, Jiang S, Zhu J, Ye W, Shen Y et al (2014) Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. Eur Polymer J 59:129–135CrossRefGoogle Scholar
  134. 134.
    Chen D, Wang R, Tjiu WW, Liu T (2011) High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers. Compos Sci Technol 71:1556–1562CrossRefGoogle Scholar
  135. 135.
    Chen D, Liu T, Zhou X, Tjiu WC, Hou H (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113:9741–9748CrossRefGoogle Scholar
  136. 136.
    Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang G et al (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165CrossRefGoogle Scholar
  137. 137.
    Heikkilä P, Harlin A (2009) Electrospinning of polyacrylonitrile (PAN) solution: effect of conductive additive and filler on the process. Express Polymer Lett 3:437–445CrossRefGoogle Scholar
  138. 138.
    Prilutsky S, Zussman E, Cohen Y (2008) The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly (acrylonitrile) nanofibers. Nanotechnology 19:165603ADSCrossRefGoogle Scholar
  139. 139.
    Pilehrood MK, Heikkilä P, Harlin A (2012) Preparation of carbon nanotube embedded in polyacrylonitrile (pan) nanofibre composites by electrospinning process. AUTEX Res J 12:1–6CrossRefGoogle Scholar
  140. 140.
    Kaur N, Kumar V, Dhakate SR (2016) Synthesis and characterization of multiwalled CNT–PAN based composite carbon nanofibers via electrospinning. SpringerPlus 5:483CrossRefGoogle Scholar
  141. 141.
    Song Y, Sun Z, Xu L, Shao Z (2017) Preparation and characterization of highly aligned carbon nanotubes/polyacrylonitrile composite nanofibers. Polymers 9:1CrossRefGoogle Scholar
  142. 142.
    Mathew G, Hong J, Rhee J, Lee H, Nah C (2005) Preparation and characterization of properties of electrospun poly (butylene terephthalate) nanofibers filled with carbon nanotubes. Polym Testing 24:712–717CrossRefGoogle Scholar
  143. 143.
    Sundaray B, Subramanian V, Natarajan TS, Krishnamurthy K (2006) Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl Phys Lett 88:143114ADSCrossRefGoogle Scholar
  144. 144.
    Sung JH, Kim HS, Jin H-J, Choi HJ, Chin I-J (2004) Nanofibrous membranes prepared by multiwalled carbon nanotube/poly (methyl methacrylate) composites. Macromolecules 37:9899–9902ADSCrossRefGoogle Scholar
  145. 145.
    Zhu J, Wei S, Chen X, Karki AB, Rutman D, Young DP et al (2010) Electrospun polyimide nanocomposite fibers reinforced with core—shell Fe–FeO nanoparticles. J Phys Chem C 114:8844–8850CrossRefGoogle Scholar
  146. 146.
    Xu W, Ding Y, Jiang S, Chen L, Liao X, Hou H (2014) Polyimide/BaTiO3/MWCNTs three-phase nanocomposites fabricated by electrospinning with enhanced dielectric properties. Mater Lett 135:158–161CrossRefGoogle Scholar
  147. 147.
    Li X, Wang N, Fan G, Yu J, Gao J, Sun G et al (2015) Electreted polyetherimide–silica fibrous membranes for enhanced filtration of fine particles. J Colloid Interface Sci 439:12–20ADSCrossRefGoogle Scholar
  148. 148.
    Wan H, Wang N, Yang J, Si Y, Chen K, Ding B et al (2014) Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J Colloid Interface Sci 417:18–26ADSCrossRefGoogle Scholar
  149. 149.
    Yang T, Yang H, Zhen SJ, Huang CZ (2015) Hydrogen-bond-mediated in situ fabrication of AgNPs/agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl Mater Interfaces 7:1586–1594CrossRefGoogle Scholar
  150. 150.
    Carlberg B, Ye LL, Liu J (2011) Surface-confined synthesis of silver nanoparticle composite coating on electrospun polyimide nanofibers. Small (Weinheim an der Bergstrasse, Germany) 7:3057–3066CrossRefGoogle Scholar
  151. 151.
    Bai L, Jia L, Yan Z, Liu Z, Liu Y (2018) Plasma-assisted fabrication of nanoparticle-decorated electrospun nanofibers. J Taiwan Inst Chem Eng 82:360–366CrossRefGoogle Scholar
  152. 152.
    Gibson I (2017) The changing face of additive manufacturing. J Manuf Technol Manage 28:10–17CrossRefGoogle Scholar
  153. 153.
    Lee J-Y, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133CrossRefGoogle Scholar
  154. 154.
    Stansbury JW, Idacavage MJ (2016) 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 32:54–64CrossRefGoogle Scholar
  155. 155.
    Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458CrossRefGoogle Scholar
  156. 156.
    Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55:155–162CrossRefGoogle Scholar
  157. 157.
    Gibson I, Rosen D, Stucker B (2010) Additive manufacturing technologies, 3D printing, rapid prototyping, and direct digital manufacturing. Springer, New YorkGoogle Scholar
  158. 158.
    Campbell I, Bourell D, Gibson I (2012) Additive manufacturing: rapid prototyping comes of age. Rapid Prototyp J 18:255–258CrossRefGoogle Scholar
  159. 159.
    de Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155CrossRefGoogle Scholar
  160. 160.
    Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O (1989) Nylon 6–clay hybrid. MRS Proceed 171:45CrossRefGoogle Scholar
  161. 161.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ϵ-caprolactam. J Polym Sci Part A Polym Chem 31:983–986ADSCrossRefGoogle Scholar
  162. 162.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) One-pot synthesis of nylon 6–clay hybrid. J Polym Sci Part A Polym Chem 31:1755–1758ADSCrossRefGoogle Scholar
  163. 163.
    Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Kurauchi T et al (1995) Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. J Appl Polym Sci 55:119–123CrossRefGoogle Scholar
  164. 164.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) Sorption of water in nylon 6-clay hybrid. J Appl Polym Sci 49:1259–1264CrossRefGoogle Scholar
  165. 165.
    Reichert P, Kressler J, Thomann R, Müllhaupt R, Stöppelmann G (1998) Nanocomposites based on a synthetic layer silicate and polyamide-12. Acta Polym 49:116–123CrossRefGoogle Scholar
  166. 166.
    Maxfield M, Christiani BR, Murthy SN, Tuller H (1995) Nanocomposites of gamma phase polymers containing inorganic particulate material. Google PatentsGoogle Scholar
  167. 167.
    Liu L, Qi Z, Zhu X (1999) Studies on nylon 6/clay nanocomposites by melt-intercalation process. J Appl Polym Sci 71:1133–1138CrossRefGoogle Scholar
  168. 168.
    Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1094CrossRefGoogle Scholar
  169. 169.
    Phang IY, Liu T, Mohamed A, Pramoda KP, Chen L, Shen L et al (2005) Morphology, thermal and mechanical properties of nylon 12/organoclay nanocomposites prepared by melt compounding. Polym Int 54:456–464CrossRefGoogle Scholar
  170. 170.
    Zhang Y, Yang JH, Ellis TS, Shi J (2006) Crystal structures and their effects on the properties of polyamide 12/clay and polyamide 6–polyamide 66/clay nanocomposites. J Appl Polym Sci 100:4782–4794CrossRefGoogle Scholar
  171. 171.
    Mohanty S, Nayak SK (2007) Effect of clay exfoliation and organic modification on morphological, dynamic mechanical, and thermal behavior of melt-compounded polyamide-6 nanocomposites. Polym Compos 28:153–162CrossRefGoogle Scholar
  172. 172.
    Alexandre B, Marais S, Langevin D, Médéric P, Aubry T (2006) Nanocomposite-based polyamide 12/montmorillonite: relationships between structures and transport properties. Desalination 199:164–166CrossRefGoogle Scholar
  173. 173.
    Hocine NA, Médéric P, Aubry T (2008) Mechanical properties of polyamide-12 layered silicate nanocomposites and their relations with structure. Polym Testing 27:330–339CrossRefGoogle Scholar
  174. 174.
    Kim GM, Lee DH, Hoffmann B, Kressler J, Stöppelmann G (2001) Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer 42:1095–1100CrossRefGoogle Scholar
  175. 175.
    Liu X, Wu Q (2002) Polyamide 66/clay nanocomposites via melt intercalation. Macromol Mater Eng 287:180–186CrossRefGoogle Scholar
  176. 176.
    Beatrice CAGa, Santos CRd, Branciforti MC, Bretas RES (2012) Nanocomposites of polyamide 6/residual monomer with organic-modified montmorillonite and their nanofibers produced by electrospinning. Mater Res 15:611–621CrossRefGoogle Scholar
  177. 177.
    Wu H, Krifa M, Koo JH (2014) Flame retardant polyamide 6/nanoclay/intumescent nanocomposite fibers through electrospinning. Text Res J 84:1106–1118CrossRefGoogle Scholar
  178. 178.
    Kim G-M, Michler GH, Ania F, Calleja FJB (2007) Temperature dependence of polymorphism in electrospun nanofibres of PA6 and PA6/clay nanocomposite. Polymer 48:4814–4823CrossRefGoogle Scholar
  179. 179.
    Saeed K, Park SY (2012) Effect of nanoclay on the thermal, mechanical, and crystallization behavior of nanofiber webs of nylon-6. Polym Compos 33:192–195CrossRefGoogle Scholar
  180. 180.
    Ristolainen N, Heikkilä P, Harlin A, Seppälä J (2006) Poly(vinyl alcohol) and polyamide-66 nanocomposites prepared by electrospinning. Macromol Mater Eng 291:114–122CrossRefGoogle Scholar
  181. 181.
    Cai Y, Tao D, Wei Q, Gao W (2008) Preparation, surface morphology, and thermal stability of polyamide 6 composite nanofibres by electrospinning. Polym Polym Compos 16:605–610CrossRefGoogle Scholar
  182. 182.
    Li Q, Gao D, Wei Q, Ge M, Liu W, Wang L et al (2010) Thermal stability and crystalline of electrospun polyamide 6/organo-montmorillonite nanofibers. J Appl Polym Sci 117:1572–1577Google Scholar
  183. 183.
    Li Q, Wei Q, Wu N, Cai Y, Gao W (2008) Structural characterization and dynamic water adsorption of electrospun polyamide6/montmorillonite nanofibers. J Appl Polym Sci 107:3535–3540CrossRefGoogle Scholar
  184. 184.
    Fong H, Liu W, Wang C-S, Vaia RA (2002) Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer 43:775–780CrossRefGoogle Scholar
  185. 185.
    Wang Y, Shi Y, Huang S (2005) Selective laser sintering of polyamide-rectorite composite. Proceed Inst Mech Eng, Part L: J Mater Design Appl 219:11–15CrossRefGoogle Scholar
  186. 186.
    Jain PK, Pandey PM, Rao P (2010) Selective laser sintering of clay-reinforced polyamide. Polym Compos 31:732–743Google Scholar
  187. 187.
    Koo J, Lao S, Ho W, Ngyuen K, Cheng J, Pilato L et al (2006) Polyamide nanocomposites for selective laser sintering. In: Proceedings of the SFF Symposium, Austin, pp 392–409Google Scholar
  188. 188.
    Kim J, Creasy TS (2004) Selective laser sintering characteristics of nylon 6/clay-reinforced nanocomposite. Polym Testing 23:629–636CrossRefGoogle Scholar
  189. 189.
    Yan CZCCZ (2011) An organically modified montmorillonite/nylon-12 composite powder for selective laser sintering. Rapid Prototyp J 17:28–36CrossRefGoogle Scholar
  190. 190.
    Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 5:1694–1696CrossRefGoogle Scholar
  191. 191.
    Follain N, Alexandre B, Chappey C, Colasse L, Médéric P, Marais S (2016) Barrier properties of polyamide 12/montmorillonite nanocomposites: effect of clay structure and mixing conditions. Compos Sci Technol 136:18–28CrossRefGoogle Scholar
  192. 192.
    Bourbigot S, Bras ML, Dabrowski F, Gilman JW, Kashiwagi T (2000) PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater 24:201–208CrossRefGoogle Scholar
  193. 193.
    Devaux E, Bourbigot S, Achari AE (2002) Crystallization behavior of PA-6 clay nanocomposite hybrid. J Appl Polym Sci 86:2416–2423CrossRefGoogle Scholar
  194. 194.
    Fornes T, Paul D (2004) Structure and properties of nanocomposites based on nylon-11 and-12 compared with those based on nylon-6. Macromolecules 37:7698–7709ADSCrossRefGoogle Scholar
  195. 195.
    Mehrabzadeh M, Kamal MR (2004) Melt processing of PA-66/clay, HDPE/clay and HDPE/PA-66/clay nanocomposites. Polym Eng Sci 44:1152–1161CrossRefGoogle Scholar
  196. 196.
    Shen L, Phang IY, Chen L, Liu T, Zeng K (2004) Nanoindentation and morphological studies on nylon 66 nanocomposites, I: effect of clay loading. Polymer 45:3341–3349CrossRefGoogle Scholar
  197. 197.
    Qin H, Su Q, Zhang S, Zhao B, Yang M (2003) Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer 44:7533–7538CrossRefGoogle Scholar
  198. 198.
    Risite H, Mabrouk KE, Bousmina M, Fassi-Fehri O (2016) Role of polyamide 11 interaction with clay and modifier on thermal, rheological and mechanical properties in polymer clay nanocomposites. J Nanosci Nanotechnol 16:7584–7593CrossRefGoogle Scholar
  199. 199.
    He X, Yang J, Zhu L, Wang B, Sun G, Lv P et al (2006) Morphology and melt rheology of nylon 11/clay nanocomposites. J Appl Polym Sci 102:542–549CrossRefGoogle Scholar
  200. 200.
    Lecouvet B, Gutierrez JG, Sclavons M, Bailly C (2011) Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym Degrad Stab 96:226–235CrossRefGoogle Scholar
  201. 201.
    Médéric P, Razafinimaro T, Aubry T (2006) Influence of melt-blending conditions on structural, rheological, and interfacial properties of polyamide-12 layered silicate nanocomposites. Polym Eng Sci 46:986–994CrossRefGoogle Scholar
  202. 202.
    Hu Y, Wang S, Ling Z, Zhuang Y, Chen Z, Fan W (2003) Preparation and combustion properties of flame retardant nylon 6/montmorillonite nanocomposite. Macromol Mater Eng 288:272–276CrossRefGoogle Scholar
  203. 203.
    Gilman J (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15:31–49CrossRefGoogle Scholar
  204. 204.
    Bourbigot S, Samyn F, Turf T, Duquesne S (2010) Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants. Polym Degrad Stab 95:320–326CrossRefGoogle Scholar
  205. 205.
    Agarwal A, Raheja A, Natarajan TS, Chandra TS (2014) Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread. Innov Food Sci Emerg Technol 26:424–430CrossRefGoogle Scholar
  206. 206.
    Bhattacharyya AR, Pötschke P, Abdel-Goad M, Fischer D (2004) Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites. Chem Phys Lett 392:28–33ADSCrossRefGoogle Scholar
  207. 207.
    Nie M, Xia H, Wu J (2013) Preparation and characterization of poly(styrene-co-butyl acrylate)-encapsulated single-walled carbon nanotubes under ultrasonic irradiation. Iran Polym J 22:409–416CrossRefGoogle Scholar
  208. 208.
    Xia H, Wang Q, Qiu G (2003) Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem Mater 15:3879–3886CrossRefGoogle Scholar
  209. 209.
    Zhao C, Hu G, Justice R, Schaefer DW, Zhang S, Yang M et al (2005) Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer 46:5125–5132CrossRefGoogle Scholar
  210. 210.
    Xu C, Jia Z, Wu D, Han Q, Meek T (2006) Fabrication of nylon-6/carbon nanotube composites. J Electron Mater 35:954–957ADSCrossRefGoogle Scholar
  211. 211.
    Scaffaro R, Maio A, Tito AC (2012) High performance PA6/CNTs nanohybrid fibers prepared in the melt. Compos Sci Technol 72:1918–923CrossRefGoogle Scholar
  212. 212.
    Zhu X-D, Zang C-G, Jiao Q-J (2014) High electrical conductivity of nylon 6 composites obtained with hybrid multiwalled carbon nanotube/carbon fiber fillers. J Appl Polym Sci 131CrossRefGoogle Scholar
  213. 213.
    Zeng H, Gao C, Wang Y, Watts PC, Kong H, Cui X et al (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47:113–122CrossRefGoogle Scholar
  214. 214.
    Krause B, Pötschke P, Häußler L (2009) Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Compos Sci Technol 69:1505–1515CrossRefGoogle Scholar
  215. 215.
    Ha H, Kim SC, Ha K (2010) Morphology and properties of polyamide/multi-walled carbon nanotube composites. Macromol Res 18:660–667CrossRefGoogle Scholar
  216. 216.
    Wang M, Wang W, Liu T, Zhang W-D (2008) Melt rheological properties of nylon 6/multi-walled carbon nanotube composites. Compos Sci Technol 68:2498–2502CrossRefGoogle Scholar
  217. 217.
    Faghihi M, Shojaei A, Bagheri R (2015) Characterization of polyamide 6/carbon nanotube composites prepared by melt mixing-effect of matrix molecular weight and structure. Compos B Eng 78:50–64CrossRefGoogle Scholar
  218. 218.
    Sahoo NG, Cheng HKF, Cai J, Li L, Chan SH, Zhao J et al (2009) Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Mater Chem Phys 117:313–320CrossRefGoogle Scholar
  219. 219.
    Chatterjee S, Nüesch F, Chu B (2013) Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers. Chem Phys Lett 557:92–96ADSCrossRefGoogle Scholar
  220. 220.
    Perrot C, Piccione PM, Zakri C, Gaillard P, Poulin P (2009) Influence of the spinning conditions on the structure and properties of polyamide 12/carbon nanotube composite fibers. J Appl Polym Sci 114:3515–3523CrossRefGoogle Scholar
  221. 221.
    Latko P, Kolbuk D, Kozera R, Boczkowska A (2016) Microstructural characterization and mechanical properties of PA11 nanocomposite fibers. J Mater Eng Perform 25:68–75CrossRefGoogle Scholar
  222. 222.
    Sandler J, Pegel S, Cadek M, Gojny F, Van Es M, Lohmar J et al (2004) A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer 45:2001–2015CrossRefGoogle Scholar
  223. 223.
    Havel M, Behler K, Korneva G, Gogotsi Y (2008) Transparent thin films of multiwalled carbon nanotubes self-assembled on polyamide 11 nanofibers. Adv Func Mater 18:2322–2327CrossRefGoogle Scholar
  224. 224.
    Bai J, Goodridge RD, Hague RJ, Song M (2013) Improving the mechanical properties of laser-sintered polyamide 12 through incorporation of carbon nanotubes. Polym Eng Sci 53:1937–1946CrossRefGoogle Scholar
  225. 225.
    Bai J, Goodridge RD, Hague RJ, Song M, Okamoto M (2014) Influence of carbon nanotubes on the rheology and dynamic mechanical properties of polyamide-12 for laser sintering. Polym Testing 36:95–100CrossRefGoogle Scholar
  226. 226.
    Bai J, Goodridge RD, Yuan S, Zhou K, Chua CK, Wei J (2015) Thermal influence of CNT on the polyamide 12 nanocomposite for selective laser sintering. Molecules 20:19041–19050CrossRefGoogle Scholar
  227. 227.
    Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. J Mater Sci Full Set Incl J Mater Sci Lett 50:2797–2805ADSCrossRefGoogle Scholar
  228. 228.
    Socher R, Krause B, Hermasch S, Wursche R, Pötschke P (2011) Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Compos Sci Technol 71:1053–1059CrossRefGoogle Scholar
  229. 229.
    Socher R, Krause B, Boldt R, Hermasch S, Wursche R, Pötschke P (2011) Melt mixed nano composites of PA12 with MWNTs: influence of MWNT and matrix properties on macrodispersion and electrical properties. Compos Sci Technol 71:306–314CrossRefGoogle Scholar
  230. 230.
    Salmoria GV, Paggi RA, Lago A, Beal VE (2011) Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym Testing 30:611–615CrossRefGoogle Scholar
  231. 231.
    Goodridge R, Shofner M, Hague R, McClelland M, Schlea M, Johnson R et al (2011) Processing of a polyamide-12/carbon nanofibre composite by laser sintering. Polym Testing 30:94–100CrossRefGoogle Scholar
  232. 232.
    Chatterjee S, Nüesch F, Chu BT (2011) Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites. Nanotechnology 22:275714ADSCrossRefGoogle Scholar
  233. 233.
    Versavaud S, Regnier G, Gouadec G, Vincent M (2014) Influence of injection molding on the electrical properties of polyamide 12 filled with multi-walled carbon nanotubes. Polymer 55:6811–6818CrossRefGoogle Scholar
  234. 234.
    Song KH, Choi CH, Choi C, Lee Mh, Lee ST (2013) Method of manufacturing polyamide and carbon nanotube composite using high shearing process. Google PatentsGoogle Scholar
  235. 235.
    Huang S, Wang M, Liu T, Zhang WD, Tjiu WC, He C et al (2009) Morphology, thermal, and rheological behavior of nylon 11/multi-walled carbon nanotube nanocomposites prepared by melt compounding. Polym Eng Sci 49:1063–1068CrossRefGoogle Scholar
  236. 236.
    Yang Z, Huang S, Liu T (2011) Crystallization behavior of polyamide 11/multiwalled carbon nanotube composites. J Appl Polym Sci 122:551–560CrossRefGoogle Scholar
  237. 237.
    Bhattacharyya AR, Bose S, Kulkarni AR, Pötschke P, Häuβler L, Fischer D et al (2007) Styrene maleic anhydride copolymer mediated dispersion of single wall carbon nanotubes in polyamide 12: crystallization behavior and morphology. J Appl Polym Sci 106:345–353CrossRefGoogle Scholar
  238. 238.
    Chiu F-C, Kao G-F (2012) Polyamide 46/multi-walled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties. Compos A Appl Sci Manuf 43:208–218CrossRefGoogle Scholar
  239. 239.
    Mago G, Kalyon DM, Fisher FT (2011) Nanocomposites of polyamide-11 and carbon nanostructures: Development of microstructure and ultimate properties following solution processing. J Polym Sci Part B Polym Phys 49:1311–1321ADSCrossRefGoogle Scholar
  240. 240.
    Fu X, Yao C, Yang G (2015) Recent advances in graphene/polyamide 6 composites: a review. RSC Adv 5:61688–61702CrossRefGoogle Scholar
  241. 241.
    O’Neill A, Bakirtzis D, Dixon D (2014) Polyamide 6/Graphene composites: the effect of in situ polymerisation on the structure and properties of graphene oxide and reduced graphene oxide. Eur Polymer J 59:353–362CrossRefGoogle Scholar
  242. 242.
    Zhang X, Fan X, Li H, Yan C (2012) Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization. J Mater Chem 22:24081–24091CrossRefGoogle Scholar
  243. 243.
    Xu Z, Gao C (2010) In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43:6716–6723ADSCrossRefGoogle Scholar
  244. 244.
    Ding P, Su S, Song N, Tang S, Liu Y, Shi L (2014) Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 66:576–584CrossRefGoogle Scholar
  245. 245.
    Nguyễn L, Choi S-M, Kim D-H, Kong N-K, Jung P-J, Park S-Y (2014) Preparation and characterization of nylon 6 compounds using the nylon 6-grafted GO. Macromol Res 22:257–263CrossRefGoogle Scholar
  246. 246.
    Yan D, Zhang H-B, Jia Y, Hu J, Qi X-Y, Zhang Z et al (2012) Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding. ACS Appl Mater Interfaces 4:4740–4745CrossRefGoogle Scholar
  247. 247.
    Chiu F-C, Huang IN (2012) Phase morphology and enhanced thermal/mechanical properties of polyamide 46/graphene oxide nanocomposites. Polym Testing 31:953–962CrossRefGoogle Scholar
  248. 248.
    Fabiola NP, Ana LMH, Carlos VS (2016) Carbon nanotube and graphene based polyamide electrospun nanocomposites: a review. J NanomaterGoogle Scholar
  249. 249.
    Ji X, Xu Y, Zhang W, Cui L, Liu J (2016) Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos A 87:29–45CrossRefGoogle Scholar
  250. 250.
    Tyan H-L, Liu Y-C, Wei K-H (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem Mater 11:1942–1947CrossRefGoogle Scholar
  251. 251.
    Yano K, Usuki A, Okada A (1997) Synthesis and properties of polyimide-clay hybrid films. J Polym Sci Part A Polym Chem 35:2289–2294ADSCrossRefGoogle Scholar
  252. 252.
    Leu C-M, Wu Z-W, Wei K-H (2002) Synthesis and properties of covalently bonded layered silicates/polyimide (BTDA-ODA) nanocomposites. Chem Mater 14:3016–3021CrossRefGoogle Scholar
  253. 253.
    Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis and properties of polyimide–clay hybrid. J Polym Sci Part A Polym Chem 31:2493–2498ADSCrossRefGoogle Scholar
  254. 254.
    Zhang Y-H, Dang Z-M, Fu S-Y, Xin JH, Deng J-G, Wu J et al (2005) Dielectric and dynamic mechanical properties of polyimide–clay nanocomposite films. Chem Phys Lett 401:553–557ADSCrossRefGoogle Scholar
  255. 255.
    Kakiage M, Ando S (2011) Effects of dispersion and arrangement of clay on thermal diffusivity of polyimide-clay nanocomposite film. J Appl Polym Sci 119:3010–3018CrossRefGoogle Scholar
  256. 256.
    Park JS, Chang JH (2009) Colorless polyimide nanocomposite films with pristine clay: thermal behavior, mechanical property, morphology, and optical transparency. Polym Eng Sci 49:1357–1365CrossRefGoogle Scholar
  257. 257.
    Tang Q-Y, Chan YC, Zhang K (2011) Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite films. Sens Actuators B: Chem 152:99–106CrossRefGoogle Scholar
  258. 258.
    Jiang Y, Yu S, Li J, Jia L, Wang C (2013) Improvement of sensitive Ni(OH)2 nonenzymatic glucose sensor based on carbon nanotube/polyimide membrane. Carbon 63:367–375CrossRefGoogle Scholar
  259. 259.
    Yoo K-P, Lim L-T, Min N-K, Lee MJ, Lee CJ, Park C-W (2010) Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens Actuators B: Chem 145:120–125CrossRefGoogle Scholar
  260. 260.
    Kim BS, Bae SH, Park Y-H, Kim J-H (2007) Preparation and characterization of polyimide/carbon-nanotube composites. Macromol Res 15:357–362CrossRefGoogle Scholar
  261. 261.
    Guo Y, Xu G, Yang X, Ruan K, Ma T, Zhang Q, et al (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites by chemically modified graphene via in-situ polymerization and electrospinning-hot press technology. J Mater Chem CGoogle Scholar
  262. 262.
    Wu G, Cheng Y, Wang Z, Wang K, Feng A (2017) In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J Mater Sci Mater Electron 28:576–581CrossRefGoogle Scholar
  263. 263.
    Liu J, Tian G, Qi S, Wu Z, Wu D (2014) Enhanced dielectric permittivity of a flexible three-phase polyimide–graphene–BaTiO3 composite material. Mater Lett 124:117–119CrossRefGoogle Scholar
  264. 264.
    Raju MP, Alam S (2009) Synthesis of polyimide nanocomposites. J Macromol Sci Part A 46:1136–1141CrossRefGoogle Scholar
  265. 265.
    Liu P, Tran TQ, Fan Z, Duong HM (2015) Formation mechanisms and morphological effects on multi-properties of carbon nanotube fibers and their polyimide aerogel-coated composites. Compos Sci Technol 117:114–120CrossRefGoogle Scholar
  266. 266.
    Fan W, Zuo L, Zhang Y, Chen Y, Liu T (2018) Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure. Compos Sci Technol 156:186–191CrossRefGoogle Scholar
  267. 267.
    Wang K, Chang Y-H, Zhang C, Wang B (2016) Conductive-on-demand: tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon 98:397–403CrossRefGoogle Scholar
  268. 268.
    Wu DC, Shen L, Low JE, Wong SY, Li X, Tjiu WC et al (2010) Multi-walled carbon nanotube/polyimide composite film fabricated through electrophoretic deposition. Polymer 51:2155–2160CrossRefGoogle Scholar
  269. 269.
    Wang HW, Dong RX, Liu CL, Chang HY (2007) Effect of clay on properties of polyimide-clay nanocomposites. J Appl Polym Sci 104:318–324CrossRefGoogle Scholar
  270. 270.
    Agag T, Koga T, Takeichi T (2001) Studies on thermal and mechanical properties of polyimide–clay nanocomposites. Polymer 42:3399–3408CrossRefGoogle Scholar
  271. 271.
    Mya KY, Wang K, Chen L, Lin TT, Pallathadka PK, Pan J et al (2008) The effect of nanofiller on the thermomechanical properties of polyimide/clay nanocomposites. Macromol Chem Phys 209:643–650CrossRefGoogle Scholar
  272. 272.
    Yu YH, Yeh JM, Liou SJ, Chen CL, Liaw DJ, Lu HY (2004) Preparation and properties of polyimide–clay nanocomposite materials for anticorrosion application. J Appl Polym Sci 92:3573–3582CrossRefGoogle Scholar
  273. 273.
    Tyan HL, Wei KH, Hsieh TE (2000) Mechanical properties of clay–polyimide (BTDA–ODA) nanocomposites via ODA-modified organoclay. J Polym Sci Part B Polym Phys 38:2873–2878ADSCrossRefGoogle Scholar
  274. 274.
    Tyan HL, Wu CY, Wei KH (2001) Effect of montmorillonite on thermal and moisture absorption properties of polyimide of different chemical structures. J Appl Polym Sci 81:1742–1747CrossRefGoogle Scholar
  275. 275.
    Tyan H-L, Liu Y-C, Wei K-H (1999) Enhancement of imidization of poly (amic acid) through forming poly (amic acid)/organoclay nanocomposites. Polymer 40:4877–4886CrossRefGoogle Scholar
  276. 276.
    Tyan H-L, Leu C-M, Wei K-H (2001) Effect of reactivity of organics-modified montmorillonite on the thermal and mechanical properties of montmorillonite/polyimide nanocomposites. Chem Mater 13:222–226CrossRefGoogle Scholar
  277. 277.
    Mo TC, Wang HW, Chen SY, Yeh YC (2008) Synthesis and characterization of polyimide/multi-walled carbon nanotube nanocomposites. Polym Compos 29:451–457CrossRefGoogle Scholar
  278. 278.
    Cai H, Yan F, Xue Q (2004) Investigation of tribological properties of polyimide/carbon nanotube nanocomposites. Mater Sci Eng, A 364:94–100CrossRefGoogle Scholar
  279. 279.
    Deshmukh S, Ounaies Z (2009) Single walled carbon nanotube (SWNT)–polyimide nanocomposites as electrostrictive materials. Sens Actuators A 155:246–252CrossRefGoogle Scholar
  280. 280.
    Ye X, Liu X, Yang Z, Wang Z, Wang H, Wang J et al (2016) Tribological properties of fluorinated graphene reinforced polyimide composite coatings under different lubricated conditions. Compos A Appl Sci Manuf 81:282–288CrossRefGoogle Scholar
  281. 281.
    Min C, Nie P, Song H-J, Zhang Z, Zhao K (2014) Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition. Tribol Int 80:131–140CrossRefGoogle Scholar
  282. 282.
    Zuo L, Fan W, Zhang Y, Zhang L, Gao W, Huang Y et al (2017) Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Compos Sci Technol 139:57–63CrossRefGoogle Scholar
  283. 283.
    Zhang L-B, Wang J-Q, Wang H-G, Xu Y, Wang Z-F, Li Z-P et al (2012) Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos A Appl Sci Manuf 43:1537–1545CrossRefGoogle Scholar
  284. 284.
    Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L-S et al (2011) Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer 52:5237–5242CrossRefGoogle Scholar
  285. 285.
    Tseng IH, Liao Y-F, Chiang J-C, Tsai M-H (2012) Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater Chem Phys 136:247–253CrossRefGoogle Scholar
  286. 286.
    Tsai M-H, Chang C-J, Lu H-H, Liao Y-F, Tseng IH (2013) Properties of magnetron-sputtered moisture barrier layer on transparent polyimide/graphene nanocomposite film. Thin Solid Films 544:324–330ADSCrossRefGoogle Scholar
  287. 287.
    Liu M, Du Y, Miao Y-E, Ding Q, He S, Tjiu WW et al (2015) Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes. Nanoscale 7:1037–1046ADSCrossRefGoogle Scholar
  288. 288.
    Li H, Dai S, Miao J, Wu X, Chandrasekharan N, Qiu H et al (2018) Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy. Carbon 126:319–327CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.DST-CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
  2. 2.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations