Processing Nanocomposites Based on Commodity Polymers

  • Prasanna Kumar S. Mural
  • Suprakas Sinha RayEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 278)


Nanocomposites consisting of commodity polymers like polyethylene, polystyrene, polypropylene, and polyvinyl chloride have demonstrated good thermomechanical behavior and electrical properties. Common routes for producing polymer nanocomposites (PNCs) with commodity polymers involves either melt mixing, in situ polymerization, or solution mixing. However, the common processing techniques cannot adequately disperse nanoparticles (NPs) in the commodity polymer matrix. The chapter describes various strategies for dispersing NPs in commodity polymers, such as functionalization of the polymer, or preparing a nanocomposite. In addition, this chapter describes the structure–property relationships of commodity polymers after incorporation of NPs, along with their performance for specific applications. Finally, an outlook regarding the challenges, opportunities, and future trends in commodity PNCs is presented, along a summary of the chapter.


Commodity polymer Nanocomposites processing Chemical functionalization of commodity polymer CNT Graphene Nanoclay Mechanical Electrical Thermal properties 



The authors would like to thank the Council for Scientific and Industrial Research and the Department of Science and Technology, South Africa, for financial support.


  1. 1.
    Rosato DV, Rosato DV (2004) Reinforced plastics handbook. Elsevier, New YorkGoogle Scholar
  2. 2.
    Bhattacharya M (2016) Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9(4):262ADSCrossRefGoogle Scholar
  3. 3.
    Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley, New JerseyGoogle Scholar
  4. 4.
    Gou J, Zhuge J, Liang F (2012) Processing of polymer nanocomposites. In: Manufacturing techniques for polymer matrix composites. Woodhead Publishing, Sawston, Cambridge, pp 95–115CrossRefGoogle Scholar
  5. 5.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641CrossRefGoogle Scholar
  6. 6.
    Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC press, Boca RatonCrossRefGoogle Scholar
  7. 7.
    Gilbert M (2012) Poly (vinyl chloride)(PVC)-based nanocomposites. In: Advances in polymer nanocomposites. Elsevier, New York, pp 216–237CrossRefGoogle Scholar
  8. 8.
    Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23(6):763–772CrossRefGoogle Scholar
  9. 9.
    Ding C, Jia D, He H, Guo B, Hong H (2005) How organo-montmorillonite truly affects the structure and properties of polypropylene. Polym Testing 24(1):94–100CrossRefGoogle Scholar
  10. 10.
    Paul D, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204CrossRefGoogle Scholar
  11. 11.
    Pagacz J, Pielichowski K (2009) Preparation and characterization of PVC/montmorillonite nanocomposites—a review. J Vinyl Add Tech 15(2):61–76Google Scholar
  12. 12.
    Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Func Mater 18(10):1518–1525CrossRefGoogle Scholar
  13. 13.
    Mural PKS, Sharma M, Madras G, Bose S (2015) A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites. RSC Adv 5(41):32078–32087CrossRefGoogle Scholar
  14. 14.
    Berzin F, Flat J-J, Vergnes B (2013) Grafting of maleic anhydride on polypropylene by reactive extrusion: effect of maleic anhydride and peroxide concentrations on reaction yield and products characteristics. J Polym Eng 33(8):673–682CrossRefGoogle Scholar
  15. 15.
    Jancar J, Douglas J, Starr FW, Kumar S, Cassagnau P, Lesser A, Sternstein SS, Buehler M (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15):3321–3343CrossRefGoogle Scholar
  16. 16.
    Affdl J, Kardos J (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352CrossRefGoogle Scholar
  17. 17.
    Xu W, Liang G, Wang W, Tang S, He P, Pan WP (2003) PP–PP-g-MAH–Org-MMT nanocomposites. I. Intercalation behavior and microstructure. J Appl Polym Sci 88(14):3225–3231CrossRefGoogle Scholar
  18. 18.
    Cadek M, Coleman J, Ryan K, Nicolosi V, Bister G, Fonseca A, Nagy J, Szostak K, Beguin F, Blau W (2004) Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett 4(2):353–356ADSCrossRefGoogle Scholar
  19. 19.
    Haggenmueller R, Gommans H, Rinzler A, Fischer JE, Winey K (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330(3):219–225ADSCrossRefGoogle Scholar
  20. 20.
    Thostenson ET, Chou T-W (2002) Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D Appl Phys 35(16):L77ADSCrossRefGoogle Scholar
  21. 21.
    Strobl C, Schäflein C, Beierlein U, Ebbecke J, Wixforth A (2004) Carbon nanotube alignment by surface acoustic waves. Appl Phys Lett 85(8):1427–1429ADSCrossRefGoogle Scholar
  22. 22.
    Chen X, Saito T, Yamada H, Matsushige K (2001) Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl Phys Lett 78(23):3714–3716ADSCrossRefGoogle Scholar
  23. 23.
    Kumar MS, Kim T, Lee S, Song S, Yang J, Nahm K, Suh E-K (2004) Influence of electric field type on the assembly of single walled carbon nanotubes. Chem Phys Lett 383(3):235–239ADSCrossRefGoogle Scholar
  24. 24.
    Camponeschi E, Vance R, Al-Haik M, Garmestani H, Tannenbaum R (2007) Properties of carbon nanotube–polymer composites aligned in a magnetic field. Carbon 45(10):2037–2046CrossRefGoogle Scholar
  25. 25.
    Xiao K, Zhang L, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67(2):177–182CrossRefGoogle Scholar
  26. 26.
    Gorrasi G, Sarno M, Di Bartolomeo A, Sannino D, Ciambelli P, Vittoria V (2007) Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J Polym Sci, Part B: Polym Phys 45(5):597–606ADSCrossRefGoogle Scholar
  27. 27.
    Dondero WE, Gorga RE (2006) Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. J Polym Sci Part B Polym Phys 44(5):864–878ADSCrossRefGoogle Scholar
  28. 28.
    Moore EM, Ortiz DL, Marla VT, Shambaugh RL, Grady BP (2004) Enhancing the strength of polypropylene fibers with carbon nanotubes. J Appl Polym Sci 93(6):2926–2933CrossRefGoogle Scholar
  29. 29.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870ADSCrossRefGoogle Scholar
  30. 30.
    Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287(6):395–403CrossRefGoogle Scholar
  31. 31.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401CrossRefGoogle Scholar
  32. 32.
    Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530ADSCrossRefGoogle Scholar
  33. 33.
    Zheng W, Lu X, Wong SC (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91(5):2781–2788CrossRefGoogle Scholar
  34. 34.
    Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010CrossRefGoogle Scholar
  35. 35.
    Zhao J, Liu Y, Cheng J, Wu S, Wang Z, Hu H, Zhou C (2017) Reinforced polystyrene via solvent-exfoliated graphene. Polym Int 66(12):1827–1833CrossRefGoogle Scholar
  36. 36.
    Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205CrossRefGoogle Scholar
  37. 37.
    Deshmukh K, Joshi GM (2014) Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites. Polym Testing 34:211–219CrossRefGoogle Scholar
  38. 38.
    Tate RS, Fryer DS, Pasqualini S, Montague MF, de Pablo JJ, Nealey PF (2001) Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates. J Chem Phys 115(21):9982–9990ADSCrossRefGoogle Scholar
  39. 39.
    Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734CrossRefGoogle Scholar
  40. 40.
    Liao K-H, Aoyama S, Abdala AA, Macosko C (2014) Does Graphene Change Tg of Nanocomposites? Macromolecules 47(23):8311–8319ADSCrossRefGoogle Scholar
  41. 41.
    Majka TM, Leszczyńska A, Pielichowski K (2016) Thermal stability and degradation of polymer nanocomposites. In: Polymer nanocomposites. Springer, Heidelberg, pp 167–190Google Scholar
  42. 42.
    Blumstein A (1965) Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. J Polym Sci Part A Polym Chem 3(7):2665–2672Google Scholar
  43. 43.
    Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15(1):31–49CrossRefGoogle Scholar
  44. 44.
    Yang J, Lin Y, Wang J, Lai M, Li J, Liu J, Tong X, Cheng H (2005) Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. J Appl Polym Sci 98(3):1087–1091CrossRefGoogle Scholar
  45. 45.
    Chatterjee A, Deopura B (2006) Thermal stability of polypropylene/carbon nanofiber composite. J Appl Polym Sci 100(5):3574–3578CrossRefGoogle Scholar
  46. 46.
    Chipara M, Lozano K, Hernandez A, Chipara M (2008) TGA analysis of polypropylene–carbon nanofibers composites. Polym Degrad Stab 93(4):871–876CrossRefGoogle Scholar
  47. 47.
    Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944CrossRefGoogle Scholar
  48. 48.
    Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell JW, Sun YP (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 21(20):2088–2092CrossRefGoogle Scholar
  49. 49.
    Alam FE, Dai W, Yang M, Du S, Li X, Yu J, Jiang N, Lin C-T (2017) In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J Mater Chem A 5(13):6164–6169CrossRefGoogle Scholar
  50. 50.
    Yang Y, Gupta M, Zalameda J, Winfree W (2008) Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites. Micro Nano Letters 3(2):35–40CrossRefGoogle Scholar
  51. 51.
    Garboczi E, Snyder K, Douglas J, Thorpe M (1995) Geometrical percolation threshold of overlapping ellipsoids. Phys Rev E 52(1):819ADSCrossRefGoogle Scholar
  52. 52.
    Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282ADSCrossRefGoogle Scholar
  53. 53.
    Chen X-M, Shen J-W, Huang W-Y (2002) Novel electrically conductive polypropylene/graphite nanocomposites. J Mater Sci Lett 21(3):213–214CrossRefGoogle Scholar
  54. 54.
    Yazdani H, Smith BE, Hatami K (2016) Electrical conductivity and mechanical performance of multiwalled CNT-filled polyvinyl chloride composites subjected to tensile load. J Appl Polymer Sci 133(29)Google Scholar
  55. 55.
    Schütz MR, Kalo H, Lunkenbein T, Breu J, Wilkie CA (2011) Intumescent-like behavior of polystyrene synthetic clay nanocomposites. Polymer 52(15):3288–3294CrossRefGoogle Scholar
  56. 56.
    Bartholmai M, Schartel B (2004) Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym Adv Technol 15(7):355–364CrossRefGoogle Scholar
  57. 57.
    Cipiriano BH, Kashiwagi T, Raghavan SR, Yang Y, Grulke EA, Yamamoto K, Shields JR, Douglas JF (2007) Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48(20):6086–6096CrossRefGoogle Scholar
  58. 58.
    Huang G, Gao J, Wang X, Liang H, Ge C (2012) How can graphene reduce the flammability of polymer nanocomposites? Mater Lett 66(1):187–189CrossRefGoogle Scholar
  59. 59.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8(5):1185–1189ADSCrossRefGoogle Scholar
  60. 60.
    Jacquelot E, Espuche E, Gérard JF, Duchet J, Mazabraud P (2006) Morphology and gas barrier properties of polyethylene-based nanocomposites. J Polym Sci Part B: Polym Phys 44(2):431–440ADSCrossRefGoogle Scholar
  61. 61.
    Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462ADSCrossRefGoogle Scholar
  62. 62.
    Yang YH, Bolling L, Priolo MA, Grunlan JC (2013) Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv Mater 25(4):503–508CrossRefGoogle Scholar
  63. 63.
    Peigney A, Laurent C, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26(6):677–683CrossRefGoogle Scholar
  64. 64.
    Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS (2002) Rapid transport of gases in carbon nanotubes. Phys Rev Lett 89(18):185901ADSCrossRefGoogle Scholar
  65. 65.
    Wu B, Li X, An D, Zhao S, Wang Y (2014) Electro-casting aligned MWCNTs/polystyrene composite membranes for enhanced gas separation performance. J Membr Sci 462:62–68ADSCrossRefGoogle Scholar
  66. 66.
    Ray SS (2013) Clay-containing polymer nanocomposites: from fundamentals to real applications. NewnesGoogle Scholar
  67. 67.
    Youssef AM (2013) Polymer nanocomposites as a new trend for packaging applications. Polymer-Plastics Technol Eng 52(7):635–660CrossRefGoogle Scholar
  68. 68.
    Nazarenko S, Meneghetti P, Julmon P, Olson B, Qutubuddin S (2007) Gas barrier of polystyrene montmorillonite clay nanocomposites: effect of mineral layer aggregation. J Polym Sci Part B Polym Phys 45(13):1733–1753ADSCrossRefGoogle Scholar
  69. 69.
    Lotti C, Isaac CS, Branciforti MC, Alves RM, Liberman S, Bretas RE (2008) Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polymer J 44(5):1346–1357CrossRefGoogle Scholar
  70. 70.
    Dadbin S, Noferesti M, Frounchi M (2008) Oxygen barrier LDPE/LLDPE/organoclay nano-composite films for food packaging. In: Macromolecular symposia. Wiley Online LibraryGoogle Scholar
  71. 71.
    Petersen H, Jakubowicz I, Enebro J, Yarahmadi N (2016) Development of nanocomposites based on organically modified montmorillonite and plasticized PVC with improved barrier properties. J Appl Polymer Sci 133(3)Google Scholar
  72. 72.
    Xie W, Gao Z, Pan W-P, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13(9):2979–2990CrossRefGoogle Scholar
  73. 73.
    Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19(11):2736–2751CrossRefGoogle Scholar
  74. 74.
    Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Func Mater 14(8):791–798CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.DST-CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
  2. 2.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations