Advertisement

Co-Creation pp 147-163 | Cite as

Open Source Medical Devices for Innovation, Education and Global Health: Case Study of Open Source Magnetic Resonance Imaging

  • Lukas WinterEmail author
  • Ruben Pellicer-Guridi
  • Lionel Broche
  • Simone A. Winkler
  • Henning M. Reimann
  • Haopeng Han
  • Felix Arndt
  • Russ Hodge
  • Süleyman Günyar
  • Manuel Moritz
  • Kate Michi Ettinger
  • Olivier de Fresnoye
  • Thoralf Niendorf
  • Mehdi Benchoufi
Chapter
Part of the Management for Professionals book series (MANAGPROF)

Abstract

Today’s societies are challenged by the increasing costs of healthcare and global inequality in the availability, accessibility, appropriateness and affordability of medical technologies. There are ways to improve equality and efficiency and decrease costs in this area without fundamentally changing current health systems and business models. Many services and products are experiencing a paradigm shift toward an open source economic model that can be extended to medical technologies in a way that will intrinsically promote sustainable growth and innovations while improving education and global health. This new way of thinking offers an infrastructure by which some sectors of global health can be democratized. Here we present an in-depth discussion of the advantages of open source medical technology for the public and private sectors, then provide a concrete example of the progress of our efforts to develop an open source magnetic resonance imaging (MRI) scanner. Based on our calculations such an instrument could potentially result in cost savings of up to $3.3 billion within about 20 years for the German healthcare system alone. On a global scale the implications of an affordable open source MRI would be even more striking. We suggest a series of milestones to be met to a widespread development of open source medical technology with the aim of improving global health in a way that is less restricted by current political and economic borders.

Keywords

open source hardware open source medical devices Magnetic Resonance Imaging 

References

  1. Arndt, F., Aussenhofer, S., Behrens, E., Blücher, C., Blümler, P., Brand, J., et al. (2017). Open source imaging initiative (OSI2) – Update and roadmap. Proceedings of the International Society for Magnetic Resonance in Medicine.Google Scholar
  2. Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature News, 533(7604), 452  https://doi.org/10.1038/533452a.CrossRefGoogle Scholar
  3. Black Duck Software. (n.d.). The tenth annual future of open source survey. Retrieved December 18, 2017, from https://www.blackducksoftware.com/2016-future-of-open-source
  4. Blücher, C., Han, H., Hoffmann, W., Seemann, R., Seifert, F., Niendorf, T., et al. (2017). COSI transmit: Open source soft- and hardware transmission system for traditional and rotating MR. Proceedings of the International Society for Magnetic Resonance in Medicine, 184.Google Scholar
  5. Cooley, C. Z., Stockmann, J. P., Armstrong, B. D., Sarracanie, M., Lev, M. H., Rosen, M. S., et al. (2015). Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. Magnetic Resonance in Medicine, 73(2), 872–883.CrossRefGoogle Scholar
  6. echOpen. (n.d.). echOpen project – Designing an open source and low-cost echo-stethoscope. Retrieved October 11, 2017, from http://echopen.org
  7. Ejbjerg, B. J., Narvestad, E., Jacobsen, S., Thomsen, H. S., & Østergaard, M. (2005). Optimised, low cost, low field dedicated extremity MRI is highly specific and sensitive for synovitis and bone erosions in rheumatoid arthritis wrist and finger joints: Comparison with conventional high field MRI and radiography. Annals of the Rheumatic Diseases, 64(9), 1280–1287.CrossRefGoogle Scholar
  8. Ettinger, K. M. (2015). Open issues and a proposal for open-source data monitoring to assure quality, reliability, and safety in health care devices targeting low-and middle-income countries. In Technologies for Development (pp. 81–90). Cham: Springer.Google Scholar
  9. Ettinger, K. M., Pharaoh, H., Buckman, R. Y., Conradie, H., & Karlen, W. (2016). Building quality mHealth for low resource settings. Journal of Medical Engineering & Technology, 40(7–8), 431–443.CrossRefGoogle Scholar
  10. European Commission. (n.d.). Guidance – Growth – European Commission. Retrieved October 11, 2017, from http://ec.europa.eu/growth/sectors/medical-devices/guidance_en
  11. Gibb, A. (2014). Building open source hardware: DIY manufacturing for hackers and makers. London: Pearson Education.Google Scholar
  12. Günyar, S. (2017, July 24). Wirtschaftliche Bewertung von Open Source Hardware am Beispiel eines Magnetresonanztomographen. Hamburg: HWI Hamburg.Google Scholar
  13. Halbach, K. (1980). Design of permanent multipole magnets with oriented rare earth cobalt material. Nuclear Instruments and Methods, 169(1), 1–10.CrossRefGoogle Scholar
  14. Huang, A. b. (2015, March 31). The death of Moore’s law will spur innovation. Retrieved November 17, 2017, from https://spectrum.ieee.org/semiconductors/design/the-death-of-moores-law-will-spur-innovation
  15. IBM. (2017, April 25). HPC in oil & gas record set today! [CTB10]. Retrieved October 11, 2017, from https://www-03.ibm.com/press/us/en/pressrelease/52164.wss
  16. Jansen, P. (n.d.). openct|the Tricorder project. Retrieved December 18, 2017, from http://www.tricorderproject.org/blog/tag/openct
  17. Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., et al. (2011). RepRap – The replicating rapid prototyper. Robotica, 29(1), 177–191  https://doi.org/10.1017/S026357471000069X.CrossRefGoogle Scholar
  18. Kersting-Sommerhoff, B., Hof, N., Lenz, M., & Gerhardt, P. (1996). MRI of peripheral joints with a low-field dedicated system: A reliable and cost-effective alternative to high-field units? European Radiology, 6(4), 561–565.CrossRefGoogle Scholar
  19. Moritz, M., Redlich, T., Grames, P. P., Wulfsberg, J. P. (2016). Value creation in open-source hardware communities: Case study of Open Source Ecology. In: Management of Engineering and Technology (PICMET), 2016 Portland International Conference on. IEEE, pp. 2368–2375Google Scholar
  20. OpenBCI. (n.d.). OpenBCI – Open Source Biosensing Tools (EEG, EMG, EKG, and more). Retrieved December 18, 2017, from http://openbci.com
  21. OpenPOWER Foundation. (n.d.). OpenPOWER Foundation. Retrieved October 11, 2017, from https://openpowerfoundation.org
  22. Open Innovation Open Science Open to the World – a vision for Europe. (2016). Publications Office European Union.Google Scholar
  23. Open Source Imaging. (n.d.). Open Source Imaging – Open source soft- and hardware research and development of magnetic resonance imaging (MRI) and other related medical devices. Retrieved October 11, 2017, from http://www.opensourceimaging.org
  24. OSHWA. (2012, May 26). Open Source Hardware Association. Retrieved November 21, 2017, from https://www.oshwa.org/definition
  25. Pääkkö, E., Reinikainen, H., Lindholm, E.-L., & Rissanen, T. (2005). Low-field versus high-field MRI in diagnosing breast disorders. European Radiology, 15(7), 1361–1368.CrossRefGoogle Scholar
  26. Parizel, P. M., Dijkstra, H. A., Geenen, G. J., Kint, P. A., Versteylen, R. J., van Wiechen, P. J., et al. (1995). Low-field versus high-field MR imaging of the knee: A comparison of signal behaviour and diagnostic performance. European Journal of Radiology, 19(2), 132–138.CrossRefGoogle Scholar
  27. Pearce, J. (2015). Quantifying the value of open source hardware development. Modern Economy, 6, 1–11.CrossRefGoogle Scholar
  28. Porup, J. M. (n.d.). This 3D-printed stethoscope costs $5, outperforms $200 competitors – Motherboard. Retrieved October 11, 2017, from https://motherboard.vice.com/en_us/article/539xkn/this-3d-printed-stethoscope-head-costs-5-outperforms-200-competitors
  29. Sferrella, S. (n.d.). Equipment service: Total cost of ownership. Retrieved November 20, 2017, from http://www.radiologybusiness.com/topics/business/equipment-service-total-cost-ownership
  30. The Economist. (2012, June 2). When code can kill or cure. The Economist. Retrieved November 21, 2017, from http://www.economist.com/node/21556098#print
  31. Thomson, C. C., & Jakubowski, M. (2012). Toward an open source civilization: (Innovations case narrative: Open source ecology). Innovations, 7(3), 53–70.CrossRefGoogle Scholar
  32. VITAPRINT. (n.d.). VITAPRINT: Vitaprint. Retrieved October 11, 2017, from http://irnas.eu/vitaprint
  33. WHO. (2010). Medical devices: Managing the mismatch: An outcome of the priority medical devices project. Geneva: World Health Organization.Google Scholar
  34. WHO. (2011). First WHO Global Forum on Medical Devices: Context, outcomes, and future actionsGoogle Scholar
  35. WHO. (n.d.). Baseline country survey on medical devices, 2014 update: Medical Equipment – Total density per million population. Retrieved October 11, 2017, from http://gamapserver.who.int/gho/interactive_charts/health_technologies/medical_equipment/atlas.html
  36. Winter, L., Barghoorn, A., Blümler, P., & Niendorf, T. (2016a). COSI magnet: Halbach magnet and Halbach gradient designs for open source low cost MRI. Proceedings of the International Society for Magnetic Resonance in Medicine, 3568.Google Scholar
  37. Winter, L., Haopeng, H., Barghoorn, A., Hoffmann, W., Hetzer, S., Winkler, S., et al. (2016b). Open source imaging initiative. Proceedings of the International Society for Magnetic Resonance in Medicine, 3638.Google Scholar
  38. Wu, Z., Chen, W., & Nayak, K. S. (2016). Minimum field strength simulator for proton density weighted MRI. PLoS One, 11(5), e0154711.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lukas Winter
    • 1
    Email author
  • Ruben Pellicer-Guridi
    • 2
  • Lionel Broche
    • 3
  • Simone A. Winkler
    • 4
  • Henning M. Reimann
    • 5
  • Haopeng Han
    • 5
  • Felix Arndt
    • 6
  • Russ Hodge
    • 5
  • Süleyman Günyar
    • 7
  • Manuel Moritz
    • 7
  • Kate Michi Ettinger
    • 8
  • Olivier de Fresnoye
    • 9
    • 10
  • Thoralf Niendorf
    • 5
    • 11
    • 12
  • Mehdi Benchoufi
    • 10
    • 13
  1. 1.Physikalisch Technische BundesanstaltBerlinGermany
  2. 2.Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia
  3. 3.Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenUK
  4. 4.Department of RadiologyStanford UniversityStanfordUSA
  5. 5.Max-Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
  6. 6.Facility for Antiproton and Ion Research in Europe (FAIR GmbH)DarmstadtGermany
  7. 7.Institute of Production EngineeringHelmut Schmidt UniversityHamburgGermany
  8. 8.Mural InstituteSan FranciscoUSA
  9. 9.Centre d’Épidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique des Hôpitaux de ParisParisFrance
  10. 10.Epidemium, Cancer Epidemiology Open Science ProgramParisFrance
  11. 11.MRI.TOOLS GmbHBerlinGermany
  12. 12.Experimental and Clinical Research Center (ECRC), a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular MedicineBerlinGermany
  13. 13.Faculté de MédicineParis Descartes UniversityParisFrance

Personalised recommendations