Advertisement

Ring Based Approximation of Graph Edit Distance

  • David B. Blumenthal
  • Sébastien Bougleux
  • Johann Gamper
  • Luc Brun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11004)

Abstract

The graph edit distance (\(\mathrm {GED}\)) is a flexible graph dissimilarity measure widely used within the structural pattern recognition field. A widely used paradigm for approximating \(\mathrm {GED}\) is to define local structures rooted at the nodes of the input graphs and use these structures to transform the problem of computing \(\mathrm {GED}\) into a linear sum assignment problem with error correction (\(\mathrm {LSAPE}\)). In the literature, different local structures such as incident edges, walks of fixed length, and induced subgraphs of fixed radius have been proposed. In this paper, we propose to use rings as local structure, which are defined as collections of nodes and edges at fixed distances from the root node. We empirically show that this allows us to quickly compute a tight approximation of \(\mathrm {GED}\).

Keywords

Graph edit distance Graph matching Upper bounds 

References

  1. 1.
    Abu-Aisheh, Z., Gaüzere, B., Bougleux, S., Ramel, J.Y., Brun, L., Raveaux, R., Héroux, P., Adam, S.: Graph edit distance contest 2016: results and future challenges. Pattern Recogn. Lett. 100, 96–103 (2017).  https://doi.org/10.1016/j.patrec.2017.10.007CrossRefGoogle Scholar
  2. 2.
    Blumenthal, D.B., Gamper, J.: Improved lower bounds for graph edit distance. IEEE Trans. Knowl. Data Eng. 30(3), 503–516 (2018).  https://doi.org/10.1109/TKDE.2017.2772243CrossRefGoogle Scholar
  3. 3.
    Blumenthal, D.B., Gamper, J.: On the exact computation of the graph edit distance. Pattern Recogn. Lett. (2018).  https://doi.org/10.1016/j.patrec.2018.05.002CrossRefGoogle Scholar
  4. 4.
    Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph edit distance as a quadratic assignment problem. Pattern Recogn. Lett. 87, 38–46 (2017).  https://doi.org/10.1016/j.patrec.2016.10.001CrossRefGoogle Scholar
  5. 5.
    Bougleux, S., Gaüzère, B., Blumenthal, D.B., Brun, L.: Fast linear sum assignment with error-correction and no cost constraints. Pattern Recogn. Lett. (2018).  https://doi.org/10.1016/j.patrec.2018.03.032CrossRefGoogle Scholar
  6. 6.
    Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit distance computation combining bipartite matching and exact neighborhood substructure distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18224-7_19CrossRefGoogle Scholar
  7. 7.
    Ferrer, M., Serratosa, F., Riesen, K.: A first step towards exact graph edit distance using bipartite graph matching. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 77–86. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18224-7_8CrossRefGoogle Scholar
  8. 8.
    Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44415-3_8CrossRefGoogle Scholar
  9. 9.
    Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44:1–44:15 (2011).  https://doi.org/10.1145/1916461.1916468MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009).  https://doi.org/10.1016/j.imavis.2008.04.004CrossRefGoogle Scholar
  11. 11.
    Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using various search strategies. Pattern Recogn. 48(4), 1349–1363 (2015).  https://doi.org/10.1016/j.patcog.2014.11.002CrossRefzbMATHGoogle Scholar
  12. 12.
    Riesen, K., Bunke, H., Fischer, A.: Improving graph edit distance approximation by centrality measures. In: ICPR 2014, pp. 3910–3914. IEEE Computer Society (2014).  https://doi.org/10.1109/ICPR.2014.671
  13. 13.
    Riesen, K., Ferrer, M., Fischer, A., Bunke, H.: Approximation of graph edit distance in quadratic time. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 3–12. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18224-7_1CrossRefGoogle Scholar
  14. 14.
    Riesen, K., Fischer, A., Bunke, H.: Improved graph edit distance approximation with simulated annealing. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 222–231. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58961-9_20CrossRefGoogle Scholar
  15. 15.
    Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2013).  https://doi.org/10.1007/s10898-012-9951-yMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Serratosa, F., Cortés, X.: Graph edit distance: moving from global to local structure to solve the graph-matching problem. Pattern Recogn. Lett. 65, 204–210 (2015).  https://doi.org/10.1016/j.patrec.2015.08.003CrossRefGoogle Scholar
  17. 17.
    Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. PVLDB 2(1), 25–36 (2009).  https://doi.org/10.14778/1687627.1687631CrossRefGoogle Scholar
  18. 18.
    Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph similarity search over large graph databases. IEEE Trans. Knowl. Data Eng. 27(4), 964–978 (2015).  https://doi.org/10.1109/TKDE.2014.2349924CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly
  2. 2.Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYCCaenFrance

Personalised recommendations