Ring Based Approximation of Graph Edit Distance
- 2 Citations
- 856 Downloads
Abstract
The graph edit distance (\(\mathrm {GED}\)) is a flexible graph dissimilarity measure widely used within the structural pattern recognition field. A widely used paradigm for approximating \(\mathrm {GED}\) is to define local structures rooted at the nodes of the input graphs and use these structures to transform the problem of computing \(\mathrm {GED}\) into a linear sum assignment problem with error correction (\(\mathrm {LSAPE}\)). In the literature, different local structures such as incident edges, walks of fixed length, and induced subgraphs of fixed radius have been proposed. In this paper, we propose to use rings as local structure, which are defined as collections of nodes and edges at fixed distances from the root node. We empirically show that this allows us to quickly compute a tight approximation of \(\mathrm {GED}\).
Keywords
Graph edit distance Graph matching Upper boundsReferences
- 1.Abu-Aisheh, Z., Gaüzere, B., Bougleux, S., Ramel, J.Y., Brun, L., Raveaux, R., Héroux, P., Adam, S.: Graph edit distance contest 2016: results and future challenges. Pattern Recogn. Lett. 100, 96–103 (2017). https://doi.org/10.1016/j.patrec.2017.10.007CrossRefGoogle Scholar
- 2.Blumenthal, D.B., Gamper, J.: Improved lower bounds for graph edit distance. IEEE Trans. Knowl. Data Eng. 30(3), 503–516 (2018). https://doi.org/10.1109/TKDE.2017.2772243CrossRefGoogle Scholar
- 3.Blumenthal, D.B., Gamper, J.: On the exact computation of the graph edit distance. Pattern Recogn. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.05.002CrossRefGoogle Scholar
- 4.Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph edit distance as a quadratic assignment problem. Pattern Recogn. Lett. 87, 38–46 (2017). https://doi.org/10.1016/j.patrec.2016.10.001CrossRefGoogle Scholar
- 5.Bougleux, S., Gaüzère, B., Blumenthal, D.B., Brun, L.: Fast linear sum assignment with error-correction and no cost constraints. Pattern Recogn. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.03.032CrossRefGoogle Scholar
- 6.Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit distance computation combining bipartite matching and exact neighborhood substructure distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_19CrossRefGoogle Scholar
- 7.Ferrer, M., Serratosa, F., Riesen, K.: A first step towards exact graph edit distance using bipartite graph matching. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 77–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_8CrossRefGoogle Scholar
- 8.Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44415-3_8CrossRefGoogle Scholar
- 9.Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44:1–44:15 (2011). https://doi.org/10.1145/1916461.1916468MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009). https://doi.org/10.1016/j.imavis.2008.04.004CrossRefGoogle Scholar
- 11.Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using various search strategies. Pattern Recogn. 48(4), 1349–1363 (2015). https://doi.org/10.1016/j.patcog.2014.11.002CrossRefzbMATHGoogle Scholar
- 12.Riesen, K., Bunke, H., Fischer, A.: Improving graph edit distance approximation by centrality measures. In: ICPR 2014, pp. 3910–3914. IEEE Computer Society (2014). https://doi.org/10.1109/ICPR.2014.671
- 13.Riesen, K., Ferrer, M., Fischer, A., Bunke, H.: Approximation of graph edit distance in quadratic time. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 3–12. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_1CrossRefGoogle Scholar
- 14.Riesen, K., Fischer, A., Bunke, H.: Improved graph edit distance approximation with simulated annealing. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 222–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58961-9_20CrossRefGoogle Scholar
- 15.Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2013). https://doi.org/10.1007/s10898-012-9951-yMathSciNetCrossRefzbMATHGoogle Scholar
- 16.Serratosa, F., Cortés, X.: Graph edit distance: moving from global to local structure to solve the graph-matching problem. Pattern Recogn. Lett. 65, 204–210 (2015). https://doi.org/10.1016/j.patrec.2015.08.003CrossRefGoogle Scholar
- 17.Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. PVLDB 2(1), 25–36 (2009). https://doi.org/10.14778/1687627.1687631CrossRefGoogle Scholar
- 18.Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph similarity search over large graph databases. IEEE Trans. Knowl. Data Eng. 27(4), 964–978 (2015). https://doi.org/10.1109/TKDE.2014.2349924CrossRefGoogle Scholar