Advertisement

Learning the Sub-optimal Graph Edit Distance Edit Costs Based on an Embedded Model

  • Pep Santacruz
  • Francesc Serratosa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11004)

Abstract

Graph edit distance has become an important tool in structural pattern recognition since it allows us to measure the dissimilarity of attributed graphs. One of its main constraints is that it requires an adequate definition of edit costs, which eventually determines which graphs are considered similar. These edit costs are usually defined as concrete functions or constants in a manual fashion and little effort has been done to learn them. The present paper proposes a framework to define these edit costs automatically. Moreover, we concretise this framework in two different models based on neural networks and probability density functions.

Keywords

Graph edit distance Edit costs Neural network Probability density function 

Notes

Acknowledgments

This research is supported by the Spanish projects TIN2016-77836-C2-1-R and ColRobTransp MINECO DPI2016-78957-R AEI/FEDER EU; and also, the European project AEROARMS, H2020-ICT-2014-1-644271.

References

  1. 1.
    Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recogn. Lett. 1(4), 245–253 (1983)CrossRefGoogle Scholar
  2. 2.
    Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)CrossRefGoogle Scholar
  3. 3.
    Caetano, T., et al.: Learning graph matching. Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)CrossRefGoogle Scholar
  4. 4.
    Leordeanu, M., Sukthankar, R., Hebert, M.: Unsupervised learning for graph matching. Int. J. Comput. Vis. 96(1), 28–45 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cortés, X., Serratosa, F.: Learning graph matching substitution weights based on the ground truth node correspondence. Int. J. Pattern Recogn. Artif. Intell. 30(2), 1650005 (2016). [22 pages]MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cortés, X., Serratosa, F.: Learning graph-matching edit-costs based on the optimality of the Oracle’s node correspondences. Pattern Recogn. Lett. 56, 22–29 (2015)CrossRefGoogle Scholar
  7. 7.
    Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit distance. Inf. Sci. 177(1), 239–247 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph matching. IEEE Trans. Syst. Man Cybern. Part B 35(3), 503–514 (2005)CrossRefGoogle Scholar
  9. 9.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)CrossRefGoogle Scholar
  10. 10.
    Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recogn. Lett. 45, 244–250 (2014)CrossRefGoogle Scholar
  11. 11.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  12. 12.
    Ferrer, M., Serratosa, F., Riesen, K.: Improving bipartite graph matching by assessing the assignment confidence. Pattern Recogn. Lett. 65, 29–36 (2015)CrossRefGoogle Scholar
  13. 13.
    Serratosa, F., Cortés, X.: Interactive graph-matching using active query strategies. Pattern Recogn. 48(4), 1364–1373 (2015)CrossRefGoogle Scholar
  14. 14.
    Luqman, M.M., Ramel, J.-Y., Lladós, J., Brouard, T.: Fuzzy multilevel graph embedding. Pattern Recogn. 46(2), 551–565 (2013)CrossRefGoogle Scholar
  15. 15.
    Moreno-García, C.F., Cortés, X., Serratosa, F.: A graph repository for learning error-tolerant graph matching. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 519–529. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49055-7_46CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universitat Rovira i VirgiliTarragonaSpain

Personalised recommendations