Advertisement

Future Research on Dragonfly Nymphs

  • Kenneth J. Tennessen
Chapter

Abstract

Opportunities for researchers, teachers, students and citizen scientists to make contributions to our knowledge on the Odonata nymphs of North America are introduced. The main taxonomic needs are rearing and describing the nymphs of 50 species of Anisoptera that are still poorly known or unknown and using the data to emend the respective identification keys. Fully evaluating nymph characters will advance attempts at integrating morphological and molecular approaches to species distinctions and phylogeny. Very few of the 330 North American Anisoptera species (~6%) have been reared through all stages from egg to full-grown nymph, resulting in an inability to identify most early instars. The structure and function of various types of nymphal setae and their role in detecting stimuli and affording camouflage constitute an exciting field for research opportunities. Growth rate, life history and habitat of most species are under-studied. Utilization of Anisoptera nymphs in biomonitoring and conservation efforts shows that Odonata provide useful regional tools but the field has not been fully researched and the value of Odonata in such pursuits is undoubtedly underestimated. In summary, data generated by studies in these various subject areas will be useful in evaluating faunal surveys, constructing phylogenetic analyses, furthering education outreach and public awareness, and enhancing species and habitat conservation efforts.

References

  1. Bode RW (1988) Quality assurance workplan for biological stream monitoring in New York State. New York State Department of Environmental Conservation, Albany, NYGoogle Scholar
  2. Bybee SM, Odgen TH, Branham MA, Whiting MF (2008) Molecules, morphology and fossils: a comprehensive approach to odonate phylogeny and the evolution of the odonate wing. Cladistics 23:1–38Google Scholar
  3. Callahan MS, McPeek MA (2016) Multi-locus phylogeny and divergence time estimates of Enallagma damselflies (Odonata: Coenagrionidae). Mol Phylogenet Evol 94:182–195CrossRefGoogle Scholar
  4. Corbet PS (1999) Dragonflies. Behavior, ecology of Odonata. Comstock Publishing Associates, Ithaca. 829 ppGoogle Scholar
  5. Chivian E, Bernstein A (eds) (2008) Sustaining life: how human health depends on biodiversity. Center for Health and the Global Environment. Oxford University Press, New YorkGoogle Scholar
  6. Chovanec A (2018) Comparing and evaluating the dragonfly fauna (Odonata) of regulated and rehabilitated stretches of the fourth order metarhithron Gurtenbach (Upper Austria). Int J Odonatol 21(1):1–18CrossRefGoogle Scholar
  7. Chovanec A, Schindler M, Waringer J, Wimmer R (2015) The Dragonfly Association Index (Insecta: Odonata) — a tool for the type-specific assessment of lowland rivers. River Res Appl 31:627–638CrossRefGoogle Scholar
  8. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325(5941):710–714CrossRefGoogle Scholar
  9. Clausnitzer V, Jödicke R (2004) Guardians of the watershed. Global status of dragonflies: critical species, threat and conservation. Int J Odonatol 7:385–398CrossRefGoogle Scholar
  10. Crunkilton RL, Duchrow RM (1991) Use of stream order and biological indices to assess water quality in the Osage and Black river basins of Missouri. Hydrobiologia 223:155–166CrossRefGoogle Scholar
  11. da Silva Monteiro Júnior C, Juen L, Hamada N (2015) Analysis of urban impacts on aquatic habitats in the central Amazon basin: adult odonates as bioindicators of environmental quality. Ecol Indic 48:303–311CrossRefGoogle Scholar
  12. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2014) Estimating the normal background rate of species extinction. Conserv Biol 29(2):452–462CrossRefGoogle Scholar
  13. Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler D, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2005) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182CrossRefGoogle Scholar
  14. Dunkle SW (1977) The larva of Somatochlora filosa (Odonata: Corduliidae). Florida Entomolog 60(3):187–191CrossRefGoogle Scholar
  15. Dunkle SW (1980) Second larval instars of Florida Anisoptera (Odonata). Dissertation, University of Florida, Gainesville. 125 ppGoogle Scholar
  16. Dunn RR (2005) Modern insect extinctions, the neglected majority. Conserv Biol 19(4):1030–1036CrossRefGoogle Scholar
  17. Elliott JM (1977) Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biolog Assoc Sci Publ 225:1–156Google Scholar
  18. Erwin DH (1994) The Permo-Triassic extinction. Nature 367(6460):231–236CrossRefGoogle Scholar
  19. Erwin DH (2006) Extinction: how life on Earth nearly ended 250 million years ago. Princeton University Press, Princeton. 296 ppGoogle Scholar
  20. Fleck G, Brenk M, Misof B (2008) Larval and molecular characters help to solve phylogenetic puzzles in the highly diverse family Libellulidae (Insecta: Odonata: Anisoptera): the Tetrathemistinae are a polyphyletic group. Org Divers Evol 8:1–16CrossRefGoogle Scholar
  21. Golfieri B, Hardersen S, Maiolini B, Surian N (2015) Odonates as indicators of the ecological integrity of the river corridor: Development and application of the Odonate River Index (ORI) in northern Italy. Ecol Indic 61(2):234–247Google Scholar
  22. Grimaldi D, Engel MS (2005) Evolution of the Insects. Cambridge University Press, New York. 755 ppGoogle Scholar
  23. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10):e0185809.  https://doi.org/10.1371/journal.pone.0185809 CrossRefGoogle Scholar
  24. Hassall C, Thompson DJ (2008) The effects of environmental warming on Odonata: a review. Int J Odonatol 11(2):121–153CrossRefGoogle Scholar
  25. Hilsenhoff WL (1987) An improved biotic index of organic stream pollution. Great Lakes Entomolog 20:31–39Google Scholar
  26. Hilsenhoff WL (1988) Rapid field assessment of organic pollution with a family level biotic index. J N Am Benthol Soc 7(1):65–68CrossRefGoogle Scholar
  27. Johansson F, Wahlström E (2002) Induced morphological defence: evidence from whole-lake manipulation experiments. Can J Zool 80(2):199–206CrossRefGoogle Scholar
  28. Kaunisto KM, Roslin T, Sääksjärvi IE, Vesterinen EJ (2017) Pellets of proof: first glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Ecol Evol 7(20):8588–8598CrossRefGoogle Scholar
  29. Keil TA (1998) Functional morphology of insect mechanoreceptors. Microscopy Research & Technique 39(6):506–531CrossRefGoogle Scholar
  30. Kerans BL, Karr JR (1994) A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecol Appl 4:768–785CrossRefGoogle Scholar
  31. King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17(4):947–963CrossRefGoogle Scholar
  32. Kinvig RG, Samways MJ (2000) Conserving dragonflies (Odonata) along streams running through commercial forestry. Odonatologica 29:195–208Google Scholar
  33. Korbaa M, Ferreras-Romero M, Ruiz-García A, Boumaiza M (2018) TSOI – a new index based on Odonata populations to assess the conservation relevance of watercourses in Tunisia. Odonatologica 47(1/2):43–72Google Scholar
  34. Kutcher TE, Bried JT (2014) Adult Odonata conservatism as an indicator of freshwater wetland condition. Ecol Indic 38:31–39CrossRefGoogle Scholar
  35. Lamb L (1925) A tabular account of the differences between the earlier instars of Pantala flavescens (Odonata: Libellulidae). Trans Am Entomolog Soc 50:289–312Google Scholar
  36. Lamb L (1929) The later larval stages of Pantala (Odonata: Libellulidae). Trans Am Entomol Soc 54:331–333Google Scholar
  37. Larsen RR (2008) Notes on the fragile habitat, distribution, and ecology of the Bleached Skimmer (Libellula composita). Argia 20(3):19–20Google Scholar
  38. Lenat DR (1993) A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. J N Am Benthol Soc 12:279–290CrossRefGoogle Scholar
  39. Lenat DR, Penrose DL (1996) History of the EPT taxa richness metric. Bull North Am Bentholog Soc 13(2):305–306Google Scholar
  40. Mendes TP, Cabette HSR, Juen L (2015) Setting boundaries: environmental and spatial effects on Odonata larvae distribution (Insecta). An Acad Bras Cienc 87(1):239–248CrossRefGoogle Scholar
  41. Modiba RV, Joseph GS, Seymour CL, Fouché P, Foord SH (2017) Restoration of riparian systems through clearing of invasive plant species improves functional diversity of odonate assemblages. Biol Conserv 214:46–54CrossRefGoogle Scholar
  42. Morales ME, Wesson DM, Sutherland IW, Impoinvil DE, Mbogo CM, Githure JI (2003) Beier JC (2003) Determination of Anopheles gambiae larval DNA in the gut of insectivorous dragonfly (Libellulidae) nymphs by polymerase chain reaction. J Am Mosq Control Assoc 19(2):163–165PubMedGoogle Scholar
  43. Nevin FR (1929) Larval development of Sympetrum vicinum (Odonata: Libellulidae). Trans Am Entomol Soc 55:79–102Google Scholar
  44. Oertli B (2008) The use of dragonflies in the assessment and monitoring of aquatic habitats. In: Córdoba-Aguilar (ed) Dragonflies and damselflies: model organisms for ecological and evolutionary research. Oxford University Press, New York, pp 79–95CrossRefGoogle Scholar
  45. Orr AG (2004) Critical species of Odonata in Malaysia, Indonesia, Singapore and Brunei. Int J Odonatol 7(2):371–384CrossRefGoogle Scholar
  46. Osborn R (2005) Odonata as indicators of habitat quality at lakes in Louisiana, United States. Odonatologica 34(3):259–270Google Scholar
  47. Ott J (2010) Monitoring climatic change with dragonflies, Series Faunistica, vol 81. Pensoft Publishers, Bulgaria, pp 1–286Google Scholar
  48. Paulson DR (2001) Recent Odonata records from southern Florida – effects of global warming? Int J Odonatol 4(1):57–69CrossRefGoogle Scholar
  49. Paulson D (2006) The importance of forests to Neotropical dragonflies. In: Cordero Rivera A (ed) Forests and Dragonflies. Fourth WDA International Symposium of Odonatology, Pontevedra, Spain, July 2005:79–101Google Scholar
  50. Paulson D (2009) Dragonflies and damselflies of the West. Princeton University Press, Princeton, NJ. 535 ppCrossRefGoogle Scholar
  51. Plafkin JL, Barbour MT, Porter KD, Gross SK, Hughes RM (1989) Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. United States Environmental Protection Agency EPA/444/4–89–001Google Scholar
  52. Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950CrossRefGoogle Scholar
  53. Rehn AC (2003) Phylogenetic analysis of higher-level relationships of Odonata. Syst Entomol 28:181–239CrossRefGoogle Scholar
  54. Richmond GM, Fullerton DS (1986) Summation of quaternary glaciations in the United States of America. Quat Sci Rev 5:183–196CrossRefGoogle Scholar
  55. Rosenberg DM, Resh VH (eds) (1993) Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New YorkGoogle Scholar
  56. Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS, Collins GS, Deutsch A, Goldin TJ, Goto K, Grajales-Nishimura JM, Grieve RAF, Gulick SPS, Johnson KR, Kiessling W, Koerberl C, Kring DA, MacLeod KG, Matsui T, Melosh J, Montanari A, Morgan JV, Neal CR, Nichols DJ, Norris RD, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold WU, Robin E, Salge T, Speijer RP, Sweet AR, Urrutia-Fucugauchi JU, Vajda V, Whalen MT, Willumsen PS (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–1218CrossRefGoogle Scholar
  57. Shehan P, Hansen TA (1986) Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14(10):868–870CrossRefGoogle Scholar
  58. Suhling F, Suhling I, Richter O (2015) Temperature response of growth of larval dragonflies – an overview. Int J Odonatol 18(1):15–30CrossRefGoogle Scholar
  59. Tedesco PA, Bigorne R, Bogan AE, Giam X, Jézéquel C, Hugueny B (2014) Estimating how many undescribed species have gone extinct. Conserv Biol 28:1360–1370CrossRefGoogle Scholar
  60. Tennessen KJ (2016) What to feed newly-hatched dragonfly nymphs? Argia 28(3):19–22Google Scholar
  61. Turgeon J, Stoks R, Thum RA, Brown JM, Mcpeek MA (2005) Simultaneous Quaternary radiations of three damselfly clades across the Holarctic. Am Nat 165(4):E78–E107CrossRefGoogle Scholar
  62. Villalobos-Jiménez G, Dunn AM, Hassall C (2016) Dragonflies and damselflies (Odonata) in urban ecosystems: A review. Eur J Entomol 113:217–232CrossRefGoogle Scholar
  63. Ware JL, May ML, Kjer KM (2007) Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): an exploration of the most speciose superfamily of dragonflies. Mol Phylogenet Evol 45:289–310CrossRefGoogle Scholar
  64. Ware J, May ML, Kjer K (2008) Chapter 4: Phylogeny, homoplasy and divergence estimates within Libelluloidea (Anisoptera: Odonata): an exploration of the usefulness of molecular and morphological characters. In: Ware JL (ed) Molecular and Morphological Systematics of Libelluloidea (Odonata: Anisoptera) and Dictyoptera, pp 108–200. PhD Dissertation, Rutgers UniversityGoogle Scholar
  65. Wilson CB (1920) Dragonflies and damselflies in relation to pondfish culture, with a list of those found near Fairport, Iowa. Bull Bureau Fish 36(1917-18):181–264Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kenneth J. Tennessen
    • 1
    • 2
  1. 1.Florida State Collection of ArthropodsGainesvilleUSA
  2. 2.WautomaUSA

Personalised recommendations