Advertisement

Sensitivity of Shape Parameters of Brake Systems Under Squeal Noise Criteria

  • P. MohanasundaramEmail author
  • F. Gillot
  • S. Besset
  • K. Shimoyama
Conference paper
  • 22 Downloads

Abstract

We propose in this paper to deal with squeal noise reduction of brake systems through their shape optimization during the design step. We first expose the FEM model used to generate the stability diagram representing the squeal noise behavior of a given brake system shape. We then propose an objective function able to be included in a minimization problem and based on the stability diagram. We use then a parallel code to browse the objective function response surface through a Latin Hypercube Sampling design of experiment. A Self Organizing Map is then generated to expose the sensibility of our objective function to seven shape parameters of the FEM brake system. We present and analysis the SOM results for further optimization steps.

Notes

Acknowledgments

The authors are indebted to the Institut Carnot Ingenierie@Lyon for its support and funding.

References

  1. 1.
    Gatt, A., Besset, S., Jézéquel, L., Hamdi, A., Diebold, J.: Reduction methods applied to aircraft brake squeal prediction and simulation. J. Aircraft 54(4), 1340–1349 (2017)CrossRefGoogle Scholar
  2. 2.
    Ibrahim, R.: Friction-induced vibration, chatter, squeal, and chaos-part 1: mechanics of contact and friction. Am. Soc. Mech. Eng. Appl. Mech. Rev. 47(7), 209–226 (1994)CrossRefGoogle Scholar
  3. 3.
    Ibrahim, R.: Friction-induced vibration, chatter, squeal, and chaos-part 2: dynamics and modeling. Am. Soc. Mech. Eng. Appl. Mech. Rev. 47(7), 227–263 (1994)CrossRefGoogle Scholar
  4. 4.
    Kinkaid, N., O’Reilly, O., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267, 105–166 (2003)CrossRefGoogle Scholar
  5. 5.
    Nechak, L., Gillot, F., Besset, S., Sinou, J.J.: Sensitivity analysis and Kriging based models for robust stability analysis of brake systems. Mech. Res. Commun. 69, 136–145 (2015)CrossRefGoogle Scholar
  6. 6.
    Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Halsted Press, New York (2004)zbMATHGoogle Scholar
  7. 7.
    Sinou, J., Loyer, A., Chiello, O., Mogenier, G., Lorang, X., Cocheteux, F., Bellaj, S.: A global strategy based on experiments and simulations for squeal prediction on industrial railway brakes. J. Sound Vib. 332(20), 5068–5085 (2013)CrossRefGoogle Scholar
  8. 8.
    Soobbarayen, K., Besset, S., Sinou, J.J.: Noise and vibration for a self-excited mechanical system with friction. Appl. Acoust. 74(10), 1191–1204 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. Mohanasundaram
    • 1
    • 2
    • 3
    Email author
  • F. Gillot
    • 1
  • S. Besset
    • 1
  • K. Shimoyama
    • 2
    • 3
  1. 1.École Centrale de lyon, LTDS UMR 5513, DySCo TeamLyonFrance
  2. 2.Institute of Fluid ScienceTohoku UniversitySendaiJapan
  3. 3.ElyTMaX UMI CNRS 3757Tohoku UniversitySendaiJapan

Personalised recommendations