Testosterone Deficiency and Other Testicular Disorders in Kidney Disease

  • Anna L. GoldmanEmail author
  • Shalender Bhasin


Testosterone deficiency is frequent among men with chronic kidney disease (CKD). Aberrations at all levels of the hypothalamic-pituitary-gonadal (HPG) axis contribute to testicular dysfunction and low testosterone levels in CKD. Testosterone levels decline as CKD progresses with further reductions in the estimated glomerular filtration rate (eGFR). Both CKD and low serum total testosterone concentrations are independent predictors of mortality risk, and combined evaluation of the GFR and circulating testosterone improves mortality risk stratification even further. Testosterone deficiency may have important clinical implications with regard to sexual dysfunction, anemia, loss of muscle mass and function, mobility, well-being, and health-related quality of life. Patients with CKD also suffer from high rates of erectile dysfunction and decreased fertility. Hypogonadism associated with CKD is seldom improved with the initiation of hemodialysis alone, but impairment of the HPG axis and sexual dysfunction are often improved by renal transplantation. In healthy hypogonadal men with normal renal function, testosterone replacement improves sexual desire, erectile function, sexual activity, muscle mass and maximal voluntary strength, as well as bone mineral density and bone quality. Randomized clinical trials are needed to determine the efficacy and safety of administering testosterone replacement therapy in patients with CKD.


Testosterone deficiency Hypogonadism Chronic kidney disease CKD Renal failure Hypertension 



Dr. Goldman has no commercial or financial conflicts of interest to disclose.

Dr. Bhasin has received research grants from the National Institute on Aging, the National Institute of Nursing Research, the Foundation for the NIH, the Patient-Centered Outcomes Research Institute, AbbVie, Transition Therapeutics, and Metro International Biotechnology; he has consulted for AbbVie and Novartis and has equity interest in FPT, LLC.


  1. 1.
    Handelsman DJ. Hypothalamic-pituitary gonadal dysfunction in renal failure, dialysis and renal transplantation. Endocr Rev. 1985;6(2):151–82.PubMedCrossRefGoogle Scholar
  2. 2.
    Foulks CJ, Cushner HM. Sexual dysfunction in the male dialysis patient: pathogenesis, evaluation, and therapy. Am J Kidney Dis. 1986;8(4):211–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Holley JL. The hypothalamic-pituitary axis in men and women with chronic kidney disease. Adv Chronic Kidney Dis. 2004;11(4):337–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Traish AM, Miner MM, Morgentaler A, Zitzmann M. Testosterone deficiency. Am J Med. 2011;124(7):578–87.PubMedCrossRefGoogle Scholar
  5. 5.
    Araujo AB, Esche GR, Kupelian V, et al. Prevalence of symptomatic androgen deficiency in men. J Clin Endocrinol Metab. 2007;92(11):4241–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Bhasin S, Pencina M, Jasuja GK, et al. Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-based sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. J Clin Endocrinol Metab. 2011;96(8):2430–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14(3):302–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Orwoll E, Lambert LC, Marshall LM, et al. Testosterone and estradiol among older men. J Clin Endocrinol Metab. 2006;91(4):1336–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Wu FC, Tajar A, Beynon JM, et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med. 2010;363(2):123–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Schaefer F, Mehls O, Ritz E. New insights into endocrine disturbances of chronic renal failure. Miner Electrolyte Metab. 1992;18(2–5):169–73.PubMedGoogle Scholar
  11. 11.
    Albaaj F, Sivalingham M, Haynes P, et al. Prevalence of hypogonadism in male patients with renal failure. Postgrad Med J. 2006;82(972):693–6.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cerqueira J, Moraes M, Glina S. Erectile dysfunction: prevalence and associated variables in patients with chronic renal failure. Int J Impot Res. 2002;14(2):65–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Palmer BF. Sexual dysfunction in uremia. J Am Soc Nephrol. 1999;10(6):1381–8.PubMedGoogle Scholar
  14. 14.
    Carrero JJ, Qureshi AR, Nakashima A, et al. Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol Dial Transplant. 2010;26(1):184–90.PubMedCrossRefGoogle Scholar
  15. 15.
    Carrero JJ, Qureshi AR, Parini P, et al. Low serum testosterone increases mortality risk among male dialysis patients. J Am Soc Nephrol. 2009;20(3):613–20.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Leavey SF, Weitzel WF. Endocrine abnormalities in chronic renal failure. Endocrinol Metab Clin N Am. 2002;31(1):107–19.CrossRefGoogle Scholar
  17. 17.
    Schmidt A, Luger A, Horl WH. Sexual hormone abnormalities in male patients with renal failure. Nephrol Dial Transplant. 2002;17(3):368–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Singh AB, Norris K, Modi N, et al. Pharmacokinetics of a transdermal testosterone system in men with end stage renal disease receiving maintenance hemodialysis and healthy hypogonadal men. J Clin Endocrinol Metab. 2001;86(6):2437–45.PubMedGoogle Scholar
  19. 19.
    Yilmaz MI, Sonmez A, Qureshi AR, et al. Endogenous testosterone, endothelial dysfunction, and cardiovascular events in men with nondialysis chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(7):1617–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Yi S, Selvin E, Rohrmann S, et al. Endogenous sex steroid hormones and measures of chronic kidney disease (CKD) in a nationally representative sample of men. Clin Endocrinol. 2009;71(2):246–52.CrossRefGoogle Scholar
  21. 21.
    Prem AR, Punekar SV, Kalpana M, Kelkar AR, Acharya VN. Male reproductive function in uraemia: efficacy of haemodialysis and renal transplantation. Br J Urol. 1996;78(4):635–8.PubMedCrossRefGoogle Scholar
  22. 22.
    de Vries CP, Gooren LJ, Oe PL. Haemodialysis and testicular function. Int J Androl. 1984;7(2):97–103.PubMedCrossRefGoogle Scholar
  23. 23.
    Ramirez G, Butcher D, Brueggemeyer CD, Ganguly A. Testicular defect: the primary abnormality in gonadal dysfunction of uremia. South Med J. 1987;80(6):698–701.PubMedCrossRefGoogle Scholar
  24. 24.
    Hylander B, Lehtihet M. Testosterone and gonadotropins but not SHBG vary with CKD stages in young and middle aged men. Basic Clin Androl. 2015;25:9.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dunkel L, Raivio T, Laine J, Holmberg C. Circulating luteinizing hormone receptor inhibitor(s) in boys with chronic renal failure. Kidney Int. 1997;51(3):777–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Mitchell R, Bauerfeld C, Schaefer F, Scharer K, Robertson WR. Less acidic forms of luteinizing hormone are associated with lower testosterone secretion in men on haemodialysis treatment. Clin Endocrinol (Oxf). 1994;41(1):65–73.CrossRefGoogle Scholar
  27. 27.
    Cheung CY. Prolactin suppresses luteinizing hormone secretion and pituitary responsiveness to luteinizing hormone-releasing hormone by a direct action at the anterior pituitary. Endocrinology. 1983;113(2):632–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Veldhuis JD, Wilkowski MJ, Zwart AD, et al. Evidence for attenuation of hypothalamic gonadotropin-releasing hormone (GnRH) impulse strength with preservation of GnRH pulse frequency in men with chronic renal failure. J Clin Endocrinol Metab. 1993;76(3):648–54.PubMedGoogle Scholar
  29. 29.
    Wheatley T, Clark PM, Clark JD, Raggatt PR, Evans D, Holder R. Pulsatility of luteinising hormone in men with chronic renal failure: abnormal rather than absent. Br Med J (Clin Res Ed). 1987;294(6570):482.CrossRefGoogle Scholar
  30. 30.
    Matsubara M, Nakagawa K, Nonomura K, Hirota N. Plasma LRH levels in chronic renal failure before and during haemodialysis. Acta Endocrinol. 1983;103(2):145–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Kuczera P, Adamczak M, Wiecek A. Changes of serum total and free testosterone concentrations in male chronic hemodialysis patients with secondary hyperparathyroidism in response to cinacalcet treatment. Kidney Blood Press Res. 2016;41(1):1–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Hofstra J, Loves S, van Wageningen B, Ruinemans-Koerts J, Jansen I, de Boer H. High prevalence of hypogonadotropic hypogonadism in men referred for obesity treatment. Neth J Med. 2008;66(3):103–9.PubMedGoogle Scholar
  33. 33.
    Mesquita JF, Ramos TF, Mesquita FP, Bastos Netto JM, Bastos MG, Figueiredo AA. Prevalence of erectile dysfunction in chronic renal disease patients on conservative treatment. Clinics (Sao Paulo). 2012;67(2):181–3.CrossRefGoogle Scholar
  34. 34.
    Palmer BF. Outcomes associated with hypogonadism in men with chronic kidney disease. Adv Chronic Kidney Dis. 2004;11(4):342–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Navaneethan SD, Vecchio M, Johnson DW, et al. Prevalence and correlates of self-reported sexual dysfunction in CKD: a meta-analysis of observational studies. Am J Kidney Dis. 2010;56(4):670–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Naya Y, Soh J, Ochiai A, et al. Significant decrease of the International Index of Erectile Function in male renal failure patients treated with hemodialysis. Int J Impot Res. 2002;14(3):172–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosas SE, Joffe M, Franklin E, et al. Prevalence and determinants of erectile dysfunction in hemodialysis patients. Kidney Int. 2001;59(6):2259–66.PubMedCrossRefGoogle Scholar
  38. 38.
    Espinoza R, Gracida C, Cancino J, Ibarra A. Prevalence of erectile dysfunction in kidney transplant recipients. Transplant Proc. 2006;38(3):916–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Brand JS, Rovers MM, Yeap BB, et al. Testosterone, sex hormone-binding globulin and the metabolic syndrome in men: an individual participant data meta-analysis of observational studies. PLoS One. 2014;9(7):e100409.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Corona G, Monami M, Rastrelli G, et al. Testosterone and metabolic syndrome: a meta-analysis study. J Sex Med. 2011;8(1):272–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Garcia-Cruz E, Leibar-Tamayo A, Romero J, et al. Metabolic syndrome in men with low testosterone levels: relationship with cardiovascular risk factors and comorbidities and with erectile dysfunction. J Sex Med. 2013;10(10):2529–38.PubMedCrossRefGoogle Scholar
  42. 42.
    Laaksonen DE, Niskanen L, Punnonen K, et al. Sex hormones, inflammation and the metabolic syndrome: a population-based study. Eur J Endocrinol. 2003;149(6):601–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Grosman H, Rosales M, Fabre B, et al. Association between testosterone levels and the metabolic syndrome in adult men. Aging Male. 2014;17(3):161–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Ebrahimi F, Christ-Crain M. Metabolic syndrome and hypogonadism - two peas in a pod. Swiss Med Wkly. 2016;146:w14283.PubMedGoogle Scholar
  45. 45.
    Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol. 2000;11(2):319–29.PubMedGoogle Scholar
  46. 46.
    Jafar TH, Schmid CH, Stark PC, et al. The rate of progression of renal disease may not be slower in women compared with men: a patient-level meta-analysis. Nephrol Dial Transplant. 2003;18(10):2047–53.PubMedCrossRefGoogle Scholar
  47. 47.
    Hall YN, Fuentes EF, Chertow GM, Olson JL. Race/ethnicity and disease severity in IgA nephropathy. BMC Nephrol. 2004;5:10.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Terada N, Arai Y, Kinukawa N, Yoshimura K, Terai A. Risk factors for renal cysts. BJU Int. 2004;93(9):1300–2.PubMedCrossRefGoogle Scholar
  49. 49.
    Donadio JV Jr, Torres VE, Velosa JA, et al. Idiopathic membranous nephropathy: the natural history of untreated patients. Kidney Int. 1988;33(3):708–15.PubMedCrossRefGoogle Scholar
  50. 50.
    Sandberg K. Mechanisms underlying sex differences in progressive renal disease. Gend Med. 2008;5(1):10–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Khoury S, Yarows SA, O'Brien TK, Sowers JR. Ambulatory blood pressure monitoring in a nonacademic setting. Effects of age and sex. Am J Hypertens. 1992;5(9):616–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Kimura N, Mizokami A, Oonuma T, Sasano H, Nagura H. Immunocytochemical localization of androgen receptor with polyclonal antibody in paraffin-embedded human tissues. J Histochem Cytochem. 1993;41(5):671–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Reckelhoff JF, Samsell L, Dey R, Racusen L, Baylis C. The effect of aging on glomerular hemodynamics in the rat. Am J Kidney Dis. 1992;20(1):70–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Reckelhoff JF, Zhang H, Granger JP. Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension. 1998;31(1 Pt 2):435–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Reckelhoff JF, Zhang H, Srivastava K, Granger JP. Gender differences in hypertension in spontaneously hypertensive rats: role of androgens and androgen receptor. Hypertension. 1999;34(4 Pt 2):920–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Fortepiani LA, Yanes L, Zhang H, Racusen LC, Reckelhoff JF. Role of androgens in mediating renal injury in aging SHR. Hypertension. 2003;42(5):952–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Baylis C. Age-dependent glomerular damage in the rat. Dissociation between glomerular injury and both glomerular hypertension and hypertrophy. Male gender as a primary risk factor. J Clin Invest. 1994;94(5):1823–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Metcalfe PD, Leslie JA, Campbell MT, Meldrum DR, Hile KL, Meldrum KK. Testosterone exacerbates obstructive renal injury by stimulating TNF-alpha production and increasing proapoptotic and profibrotic signaling. Am J Physiol Endocrinol Metab. 2008;294(2):E435–43.PubMedCrossRefGoogle Scholar
  59. 59.
    Chen YF, Naftilan AJ, Oparil S. Androgen-dependent angiotensinogen and renin messenger RNA expression in hypertensive rats. Hypertension. 1992;19(5):456–63.PubMedCrossRefGoogle Scholar
  60. 60.
    Ellison KE, Ingelfinger JR, Pivor M, Dzau VJ. Androgen regulation of rat renal angiotensinogen messenger RNA expression. J Clin Invest. 1989;83(6):1941–5.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Alexander BT, Cockrell KL, Rinewalt AN, Herrington JN, Granger JP. Enhanced renal expression of preproendothelin mRNA during chronic angiotensin II hypertension. Am J Physiol Regul Integr Comp Physiol. 2001;280(5):R1388–92.PubMedCrossRefGoogle Scholar
  62. 62.
    Reckelhoff JF, Yanes LL, Iliescu R, Fortepiani LA, Granger JP. Testosterone supplementation in aging men and women: possible impact on cardiovascular-renal disease. Am J Physiol Renal Physiol. 2005;289(5):F941–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Dousdampanis P, Trigka K, Fourtounas C, Bargman JM. Role of testosterone in the pathogenesis, progression, prognosis and comorbidity of men with chronic kidney disease. Ther Apher Dial. 2014;18(3):220–30.PubMedGoogle Scholar
  64. 64.
    Karakitsos D, Patrianakos AP, De Groot E, et al. Androgen deficiency and endothelial dysfunction in men with end-stage kidney disease receiving maintenance hemodialysis. Am J Nephrol. 2006;26(6):536–43.PubMedCrossRefGoogle Scholar
  65. 65.
    Gungor O, Kircelli F, Carrero JJ, et al. Endogenous testosterone and mortality in male hemodialysis patients: is it the result of aging? Clin J Am Soc Nephrol. 2010;5(11):2018–23.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kyriazis J, Tzanakis I, Stylianou K, et al. Low serum testosterone, arterial stiffness and mortality in male haemodialysis patients. Nephrol Dial Transplant. 2011;26(9):2971–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Haring R, Nauck M, Volzke H, et al. Low serum testosterone is associated with increased mortality in men with stage 3 or greater nephropathy. Am J Nephrol. 2011;33(3):209–17.PubMedCrossRefGoogle Scholar
  68. 68.
    Shoskes DA, Kerr H, Askar M, Goldfarb DA, Schold J. Low testosterone at time of transplantation is independently associated with poor patient and graft survival in male renal transplant recipients. J Urol. 2014;192(4):1168–71.PubMedCrossRefGoogle Scholar
  69. 69.
    Deb P, Gupta SK, Godbole MM. Effects of short-term testosterone replacement on areal bone mineral density and bone turnover in young hypogonadal males. Indian J Endocrinol Metab. 2012;16(6):947–51.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Snyder PJ, Kopperdahl DL, Stephens-Shields AJ, et al. Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial. JAMA Intern Med. 2017;177(4):471–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rix M, Andreassen H, Eskildsen P, Langdahl B, Olgaard K. Bone mineral density and biochemical markers of bone turnover in patients with predialysis chronic renal failure. Kidney Int. 1999;56(3):1084–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Stehman-Breen CO, Sherrard DJ, Alem AM, et al. Risk factors for hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58(5):2200–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Alem AM, Sherrard DJ, Gillen DL, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58(1):396–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Lindberg JS, Moe SM. Osteoporosis in end-state renal disease. Semin Nephrol. 1999;19(2):115–22.PubMedGoogle Scholar
  75. 75.
    Ishani A, Paudel M, Taylor BC, et al. Renal function and rate of hip bone loss in older men: the Osteoporotic Fractures in Men Study. Osteoporos Int. 2008;19(11):1549–56.PubMedCrossRefGoogle Scholar
  76. 76.
    Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–59.PubMedCrossRefGoogle Scholar
  77. 77.
    Travison TG, Vesper HW, Orwoll E, et al. Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. J Clin Endocrinol Metab. 2017;102(4):1161–73.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sikaris K, McLachlan RI, Kazlauskas R, de Kretser D, Holden CA, Handelsman DJ. Reproductive hormone reference intervals for healthy fertile young men: evaluation of automated platform assays. J Clin Endocrinol Metab. 2005;90(11):5928–36.PubMedCrossRefGoogle Scholar
  79. 79.
    Boyce MJ, Baisley KJ, Clark EV, Warrington SJ. Are published normal ranges of serum testosterone too high? Results of a cross-sectional survey of serum testosterone and luteinizing hormone in healthy men. BJU Int. 2004;94(6):881–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Wang C, Catlin DH, Demers LM, Starcevic B, Swerdloff RS. Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab. 2004;89(2):534–43.PubMedCrossRefGoogle Scholar
  81. 81.
    Rosner W, Auchus RJ, Azziz R, Sluss PM, Raff H. Position statement: utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. J Clin Endocrinol Metab. 2007;92(2):405–13.PubMedCrossRefGoogle Scholar
  82. 82.
    Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84(10):3666–72.PubMedCrossRefGoogle Scholar
  83. 83.
    Zakharov MN, Bhasin S, Travison TG, et al. A multi-step, dynamic allosteric model of testosterone’s binding to sex hormone binding globulin. Mol Cell Endocrinol. 2015;399:190–200.PubMedCrossRefGoogle Scholar
  84. 84.
    Sherman FP. Impotence in patients with chronic renal failure on dialysis: its frequency and etiology. Fertil Steril. 1975;26(3):221–3.PubMedCrossRefGoogle Scholar
  85. 85.
    Carrero JJ, Stenvinkel P. The vulnerable man: impact of testosterone deficiency on the uraemic phenotype. Nephrol Dial Transplant. 2012;27(11):4030–41.PubMedCrossRefGoogle Scholar
  86. 86.
    Chauveau P, Moreau K, Lasseur C, Fouque D, Combe C, Aparicio M. [Sarcopenia or uremic myopathy in CKD patients]. Nephrol Ther. 2016;12(2):71–5.Google Scholar
  87. 87.
    Lim VS, Ikizler TA, Raj DS, Flanigan MJ. Does hemodialysis increase protein breakdown? Dissociation between whole-body amino acid turnover and regional muscle kinetics. J Am Soc Nephrol. 2005;16(4):862–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Ikizler TA, Pupim LB, Brouillette JR, et al. Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation. Am J Physiol Endocrinol Metab. 2002;282(1):E107–16.PubMedCrossRefGoogle Scholar
  89. 89.
    Raj DS, Dominic EA, Wolfe R, et al. Coordinated increase in albumin, fibrinogen, and muscle protein synthesis during hemodialysis: role of cytokines. Am J Physiol Endocrinol Metab. 2004;286(4):E658–64.PubMedCrossRefGoogle Scholar
  90. 90.
    Pupim LB, Majchrzak KM, Flakoll PJ, Ikizler TA. Intradialytic oral nutrition improves protein homeostasis in chronic hemodialysis patients with deranged nutritional status. J Am Soc Nephrol. 2006;17(11):3149–57.PubMedCrossRefGoogle Scholar
  91. 91.
    Cigarran S, Pousa M, Castro MJ, et al. Endogenous testosterone, muscle strength, and fat-free mass in men with chronic kidney disease. J Ren Nutr. 2013;23(5):e89–95.PubMedCrossRefGoogle Scholar
  92. 92.
    Johansen KL. Testosterone metabolism and replacement therapy in patients with end-stage renal disease. Semin Dial. 2004;17(3):202–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Johansen KL. Treatment of hypogonadism in men with chronic kidney disease. Adv Chronic Kidney Dis. 2004;11(4):348–56.PubMedCrossRefGoogle Scholar
  94. 94.
    Johansen KL, Mulligan K, Schambelan M. Anabolic effects of nandrolone decanoate in patients receiving dialysis: a randomized controlled trial. JAMA. 1999;281(14):1275–81.PubMedCrossRefGoogle Scholar
  95. 95.
    Eiam-Ong S, Buranaosot S, Wathanavaha A, Pansin P. Nutritional effect of nandrolone decanoate in predialysis patients with chronic kidney disease. J Ren Nutr. 2007;17(3):173–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Shin YS, You JH, Cha JS, Park JK. The relationship between serum total testosterone and free testosterone levels with serum hemoglobin and hematocrit levels: a study in 1221 men. Aging Male. 2016;19(4):209–14.PubMedCrossRefGoogle Scholar
  97. 97.
    Bachman E, Travison TG, Basaria S, et al. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci. 2014;69(6):725–35.PubMedCrossRefGoogle Scholar
  98. 98.
    Krabbe S, Christensen T, Worm J, Christiansen C, Transbol I. Relationship between haemoglobin and serum testosterone in normal children and adolescents and in boys with delayed puberty. Acta Paediatr Scand. 1978;67(5):655–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Thomsen K, Riis B, Krabbe S, Christiansen C. Testosterone regulates the haemoglobin concentration in male puberty. Acta Paediatr Scand. 1986;75(5):793–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Murphy WG. The sex difference in haemoglobin levels in adults – mechanisms, causes, and consequences. Blood Rev. 2014;28(2):41–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Grossmann M, Zajac JD. Hematological changes during androgen deprivation therapy. Asian J Androl. 2012;14(2):187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kraft D. Long-term treatment of renal anaemia with mesterolone (author’s transl). Dtsch Med Wochenschr. 1980;105(23):830–2.PubMedCrossRefGoogle Scholar
  103. 103.
    Yang Q, Abudou M, Xie XS, Wu T. Androgens for the anaemia of chronic kidney disease in adults. Cochrane Database Syst Rev. 2014;(10):CD006881.Google Scholar
  104. 104.
    Maggio M, Snyder PJ, Ceda GP, et al. Is the haematopoietic effect of testosterone mediated by erythropoietin? The results of a clinical trial in older men. Andrology. 2013;1(1):24–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Perretta M, Valladares L, Romero C, et al. Hormone action on the cell nucleus: effect of erythropoietin and testosterone on bone marrow. Arch Biol Med Exp (Santiago). 1976;10(1–3):35–40.Google Scholar
  106. 106.
    Ohlander SJ, Varghese B, Pastuszak AW. Erythrocytosis following testosterone therapy. Sex Med Rev. 2018;6(1):77–85.Google Scholar
  107. 107.
    Paul AK, Latif ZA, Iqbal S, Amin F, Shefin SM, Ashrafuzzaman SM. Androgen versus erythropoietin for the treatment of anaemia of pre-dialysis chronic kidney disease. Mymensingh Med J. 2012;21(1):125–8.PubMedGoogle Scholar
  108. 108.
    Gaughan WJ, Liss KA, Dunn SR, et al. A 6-month study of low-dose recombinant human erythropoietin alone and in combination with androgens for the treatment of anemia in chronic hemodialysis patients. Am J Kidney Dis. 1997;30(4):495–500.PubMedCrossRefGoogle Scholar
  109. 109.
    Teruel JL, Aguilera A, Marcen R, Navarro Antolin J, Garcia Otero G, Ortuno J. Androgen therapy for anaemia of chronic renal failure. Indications in the erythropoietin era. Scand J Urol Nephrol. 1996;30(5):403–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Carrero JJ, Barany P, Yilmaz MI, et al. Testosterone deficiency is a cause of anaemia and reduced responsiveness to erythropoiesis-stimulating agents in men with chronic kidney disease. Nephrol Dial Transplant. 2012;27(2):709–15.PubMedCrossRefGoogle Scholar
  111. 111.
    Akbari A, Clase CM, Acott P, et al. Canadian Society of Nephrology commentary on the KDIGO clinical practice guideline for CKD evaluation and management. Am J Kidney Dis. 2015;65(2):177–205.PubMedCrossRefGoogle Scholar
  112. 112.
    Martin-Malo A, Benito P, Castillo D, et al. Effect of clomiphene citrate on hormonal profile in male hemodialysis and kidney transplant patients. Nephron. 1993;63(4):390–4.PubMedCrossRefGoogle Scholar
  113. 113.
    Lim VS, Fang VS. Restoration of plasma testosterone levels in uremic men with clomiphene citrate. J Clin Endocrinol Metab. 1976;43(6):1370–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Tokgoz B, Utas C, Dogukan A, et al. Effects of long-term erythropoietin therapy on the hypothalamo-pituitary-testicular axis in male CAPD patients. Perit Dial Int. 2001;21(5):448–54.PubMedGoogle Scholar
  115. 115.
    Anantharaman P, Schmidt RJ. Sexual function in chronic kidney disease. Adv Chronic Kidney Dis. 2007;14(2):119–25.PubMedCrossRefGoogle Scholar
  116. 116.
    Wu SC, Lin SL, Jeng FR. Influence of erythropoietin treatment on gonadotropic hormone levels and sexual function in male uremic patients. Scand J Urol Nephrol. 2001;35(2):136–40.PubMedCrossRefGoogle Scholar
  117. 117.
    Suzuki H, Murakami M, Ichihara A, Saruta T. Alterations in sex hormones and sexual function of patients with renal failure treated with recombinant human erythropoietin. Nihon Jinzo Gakkai Shi. 1992;34(1):79–84.PubMedGoogle Scholar
  118. 118.
    Ramirez G, Butcher DE, Newton JL, Brueggemeyer CD, Moon J, Gomez-Sanchez C. Bromocriptine and the hypothalamic hypophyseal function in patients with chronic renal failure on chronic hemodialysis. Am J Kidney Dis. 1985;6(2):111–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Vircburger MI, Prelevic GM, Peric LA, Knezevic J, Djukanovic L. Testosterone levels after bromocriptine treatment in patients undergoing long-term hemodialysis. J Androl. 1985;6(2):113–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Stegmayr B, Skogstrom K. Hyperprolactinaemia and testosterone production. Observations in 2 men on long-term dialysis. Horm Res. 1985;21(4):224–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Bundschu HD, Rager K, Heller S, et al. Effects of long term HCG administration on testicular function in hemodialysis patients (author's transl). Klin Wochenschr. 1976;54(21):1039–46.PubMedCrossRefGoogle Scholar
  122. 122.
    Karagiannis A, Harsoulis F. Gonadal dysfunction in systemic diseases. Eur J Endocrinol. 2005;152(4):501–13.PubMedCrossRefGoogle Scholar
  123. 123.
    Zhang R, Alper B, Simon E, Florman S, Slakey D. Management of metabolic bone disease in kidney transplant recipients. Am J Med Sci. 2008;335(2):120–5.PubMedCrossRefGoogle Scholar
  124. 124.
    Burgos FJ, Pascual J, Gomez V, Orofino L, Liano F, Ortuno J. Effect of kidney transplantation and cyclosporine treatment on male sexual performance and hormonal profile: a prospective study. Transplant Proc. 1997;29(1–2):227–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Chu SH, Tay SK, Chiang YJ, et al. Male sexual performance and hormonal studies in uremic patients and renal transplant recipients. Transplant Proc. 1998;30(7):3062–3.PubMedCrossRefGoogle Scholar
  126. 126.
    Akbari F, Alavi M, Esteghamati A, et al. Effect of renal transplantation on sperm quality and sex hormone levels. BJU Int. 2003;92(3):281–3.PubMedCrossRefGoogle Scholar
  127. 127.
    Tsujimura A, Matsumiya K, Tsuboniwa N, et al. Effect of renal transplantation on sexual function. Arch Androl. 2002;48(6):467–74.PubMedCrossRefGoogle Scholar
  128. 128.
    Hamdi SM, Walschaerts M, Bujan L, Rostaing L, Kamar N. A prospective study in male recipients of kidney transplantation reveals divergent patterns for inhibin B and testosterone secretions. Basic Clin Androl. 2014;24:11.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Malavaud B, Rostaing L, Rischmann P, Sarramon JP, Durand D. High prevalence of erectile dysfunction after renal transplantation. Transplantation. 2000;69(10):2121–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Rebollo P, Ortega F, Valdes C, et al. Factors associated with erectile dysfunction in male kidney transplant recipients. Int J Impot Res. 2003;15(6):433–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Lee S, Coco M, Greenstein SM, Schechner RS, Tellis VA, Glicklich DG. The effect of sirolimus on sex hormone levels of male renal transplant recipients. Clin Transpl. 2005;19(2):162–7.CrossRefGoogle Scholar
  132. 132.
    Huyghe E, Zairi A, Nohra J, Kamar N, Plante P, Rostaing L. Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: an overview. Transpl Int. 2007;20(4):305–11.PubMedCrossRefGoogle Scholar
  133. 133.
    Zuber J, Anglicheau D, Elie C, et al. Sirolimus may reduce fertility in male renal transplant recipients. Am J Transplant. 2008;8(7):1471–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital/Harvard Medical SchoolBostonUSA

Personalised recommendations